Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Биологическая химия / Биологическая химия - Березов, Коровкин

.pdf
Скачиваний:
9799
Добавлен:
18.03.2016
Размер:
39.21 Mб
Скачать

репликации у Е. coli), фактор С–функцию стабилизатора всего репликационного комплекса.

В генетической инженерии с целью получения белков в достаточных количествах и с заданными свойствами (например, для генотерапии наследственных и соматических болезней) широкое применение получили эндонуклеазы рестриктазы, катализирующие расщепление молекулы двухцепочечной ДНК по специфическим нуклеотидным последовательностям внутри цепи. Рестриктазы узнают определенные 4–7-членные последовательности, вызывая, таким образом, разрывы в определенных сайтах цепи ДНК. При этом образуются не случайные последовательности, а фрагменты ДНК строго определенной структуры с липкими концами (рекомбинантные ДНК), используемые далее для конструирования гибридных молекул и получения генно-инженерной, биотехнологической продукции (например, инсулина, гормона роста, интерферона, вакцин против вируса гепатита В, СПИДа и др.).

Общий механизм синтеза ДНК. Основываясь на данных о двухспиральной антипараллельной структуре, химическом составе ДНК (см. главу 3) и значении «активированной» формы энергии для биосинтеза полимерных молекул, А. Корнберг еще в 1955 г. указал на возможность синтеза ДНК энзиматическим путем в бесклеточной системе в присутствии изолированной из Е. coli ДНК-полимеразы и предшественников дезоксирибонуклеозидтрифосфатов. Реакция, практически осуществленная в 1967 г., сводится к синтезу новой молекулы ДНК:

n1

dАТФ

 

Д

dАМФ n1

 

 

n2

dГTФ

 

dГМФ n2

 

 

Mg2+;ДНК-матрица

Н

+(n1

+n2+n3+ n4)РРi

n3

dЦТФ

ДНК-полимераза

dЦMФ n3

К

 

 

n4

dТТФ

 

dTMФ n4

 

 

 

 

 

 

Химический смысл полимеризации состоит в том, что свободная 3'-гидроксильная группа матрицы атакует α-фосфатную группу соответствующего присоединяемого нуклеозидтрифосфата (определяется природой азотистого основания затравки), при этом происходят отщепление остатка пирофосфата и образование фосфодиэфирной связи. Далее свободный 3'-гидроксил вновь присоединенного нуклеотида атакует α-фосфатную группу следующего нуклеозидтрифосфата, и таким путем продолжается процесс полимеризации, идущий в направлении 5'–>3', антипараллельно матрице, оканчивающейся 5'-фосфатом:

ДНК-полимераза

+ PPi

 

Реакция требует присутствия одноцепочечной ДНК или в крайнем случае небольшого полидезоксирибонуклеотида. В деталях выяснено значение предобразованной ДНК в механизмах действия ДНК-полимераз:

481

ДНК служит не только затравкой, но и матрицей, на которой фермент комплементарно и антипараллельно синтезирует дочернюю цепь ДНК. Это можно представить в виде схемы:

А

dТТФ

А

Т

Г

dЦТФ

Г

Ц

 

 

ДНК-полимераза

+ 4PPi

 

 

 

Т

dАТФ

Т

А

Ц

dГТФ

Ц

Г

Были предприняты другие подходы к выяснению механизма полимеразной реакции. В лаборатории А. Корнберга был открыт фаг (φХ174, содержащий одноцепочечную кольцевую ДНК. Эту молекулу использовали в качестве матрицы в ДНК-полимеразной реакции и получили биологически активную ДНК фага, использовав фермент ДНК-лигазу, обладающую способностью катализировать соединение (сшивку) концов разрывов в молекуле ДНК. Было показано, что в процессе репликации одноцепочечная ДНК фага (φХ174 проходит стадию образования двухцепочечной кольцевой ДНК. Применив ряд остроумных подходов, А. Корнберг и сотр. в опытах in vitro создали искусственную молекулу фага φХ174, обладающую способностью поражать (инфицировать) Е. coli, вызывая лизис бактерии. Последовательность событий может быть представлена на схеме, где исходная молекула кольцевой ДНК фага φХ174 обозначена плюсом (+), а вновь синтезируемая молекула–минусом (–) (рис. 13.1). М. Мезельсон и Ф. Сталь показали полуконсервативный механизм репликации ДНК, включающий образование дочерних молекул ДНК, в каждой из которых сохраняется лишь одна родительская цепь (рис. 13.2; 13.3).

Сложность процесса репликации ДНК объясняется тем, что обе цепи реплицируются одновременно, хотя имеют разное направление (5'–>3' и 3'–>5'); кроме того, рост дочерних цепей также должен происходить

впротивоположных направлениях. Элонгация каждой дочерней цепи может осуществляться только в направлении 5'–>3'. Р. Оказаки высказал предположение, подтвержденное экспериментальными данными, что синтез одной из дочерних цепей осуществляется непрерывно в одном направлении,

вто время как синтез другой дочерней цепи происходит прерывисто, путем соединения коротких фрагментов (в честь автора названы фрагментами Оказаки), в свою очередь синтезирующихся в противоположном направлении (рис. 13.4).

Как видно, синтез ведущей цепи ДНК идет всегда в направлении 5'–>3', соответствующем направлению движения репликационной вилки. Сохраняя правило синтеза дочерних молекул ДНК 5'–>3', синтез на второй цепи родительской ДНК идет в направлении, противоположном движению репликационной вилки. В зависимости от типа клетки фрагменты Оказаки

482

Кольцевая

одноцепочечная ДНК фага φХ174

ДНК-полимераза

 

ДНК-полимераза

 

Образование

 

незамкнутой

 

комплементарной

 

ДНК

ДНК-лигаза

ДНК-лигаза

 

Замыкание

 

кольца

Эндонуклеаза

Эндонуклеаза

 

 

Разрыв в

 

исходной

 

цепиДНК

нагревание

нагревание

 

 

Денатурация

 

исходной

 

(+) ДНК

Синтезированная

молекулаДНК

Использование новой молекулы ДНК в качестве матрицы

Замыкание

цепи

Разрыв в (–) цепи

Денатурация

(–)цепи

Новая синтетическая кольцевая ДНК, идентичная исходной ДНК фага φХ174

Рис. 13.1. Роль ДНК-полимеразы и ДНК-лигазы в синтезе кольцевой одноцепочечной ДНК фага φХ174.

имеют разные размеры–от нескольких сот до нескольких тысяч нуклеотидов (150–200 у эукариот и 1000–2000 у бактерий).

Получены доказательства, что образование каждого фрагмента Оказаки требует наличия короткого затравочного комплементарного праймера – участка РНК, синтез которого катализируется праймазой. Затем при участии ДНК-полимеразы III синтезируются длинные участки ДНК. РНКзатравки далее вырезаются при участии ДНК-полимеразы I, а свободные места их (бреши) замещаются (достраиваются) комплементарными дезоксирибонуклеотидами под действием той же ДНК-полимеразы I; наконец, сшивание разъединенных участков отстающей цепи осуществляется при помощи ДНК-лигаз. Подобный механизм челночного синтеза ДНК легко объясняет фактические данные о накоплении коротких фрагментов ДНК у Е. coli во время репликации ДНК.

Особенности репликации ДНК у эукариот. Репликация ДНК у эукариот, по существу аналогичная репликации ДНК у прокариот, имеет ряд особенностей. Например, вместо одной точки репликации в ДНК эукариот имеются специфические точки «начала», так называемые автономно реплицирующие последовательности (около 300 нуклеотидных пар); в дрожжевой клетке таких элементов около 400. Кроме того, скорость движения репликационной вилки у эукариот (примерно 50 нуклеотидов

483

1

2

ДНК-гираза

ДНК-хеликаза rер-белок

Рис. 13.2. Полуконсервативная репликация ДНК in vitro.

3Каждая из двух цепей родительской ДНК служит матрицей для синтеза дочерних молекул ДНК.

1- родительская молекула; 2 - дочерние молекулы (первая генерация); 3 - дочерние молекулы

(вторая генерация).

Праймасома

Комплекс белков dnaB и dnaC

ДНК-связывающие белки

Праймаза Фрагменты Оказаки

Праймер

Ведущая цепь

ДНК-полимераза III Удаление праймера

ДНК-лигаза

ЦНК-полимераза I Отстающая цепь

Рис. 13.3. Основные этапы репликации ДНК (схема).

484

Лидирующая

цепь

Родительская ДНК

Фрагменты Направление движения Оказаки репликационной вилки

Отстающая цепь

Рис. 13.4. Схематическое изображение непрерывного и прерывистого синтеза цепей ДНК при репликации.

в секунду) почти в 10 раз ниже, чем у E. coli. Для репликации ДНК генома человека из одной-единственной точки с подобной скоростью потребовалось бы более 500 ч; вместо этого репликация генома человека происходит в обоих направлениях и одновременно из множества точек (множество «начал» репликации), вовлекая от 30000 до 330000 пар оснований. Репликация продолжается до тех пор, пока не будут синтезированы две дочерние молекулы ДНК, в каждой из которых содержится одна родительская цепь (см. рис. 13.4). Таким образом, множественность точек «начала» репликации ДНК, вероятнее всего, является общим правилом для всех клеток эукариот.

Как было указано, инициация биосинтеза дочерних цепей ДНК требует предварительного синтеза на матрице ДНК необычного затравочного олигорибонуклеотида, названного праймером, со свободной гидроксильной группой у С-3' рибозы. Этот короткий олигорибонуклеотид синтезируется комплементарно на матрице ДНК при участии особого фермента–прай- мазы, наделенной РНК-полимеразной активностью.

Матричная цепь ДНК

Направление синтеза

Праймер (олигорибонуклеотид)

Предполагают, что именно с этой точки концевого 3'-гидроксила рибозы праймера начинается истинный синтез лидирующей дочерней цепи ДНК, комплементарной родительской. Синтез начинается с реакции между 3'-ОН-группой концевого рибонуклеотида праймера и α-фосфатной группой первого дезоксирибонуклеотидтрифосфата в строгом соответствии с комплементарностью родительской цепи ДНК, при этом освобождается пирофосфат. В дальнейшем этот фрагмент РНК, комплементарно присоединенный к новообразованной цепи ДНК, разрушается под действием ДНК-полимеразы I, и возникшая брешь застраивается олигодезоксирибонуклеотидом при помощи той же ДНК-полимеразы I. Вполне допустимо

485

предположение, что синтез праймера из олигорибонуклеотида имеет глубокий биологический смысл, поскольку в этом случае могут устраняться ошибки, неизбежно возникающие при инициации репликации ДНК.

Этапы биосинтеза ДНК. Предложен ряд моделей механизма биосинтеза ДНК с участием указанных ранее ферментов и белковых факторов, однако детали некоторых этапов этого синтеза еще не выяснены. Основываясь главным образом на данных, полученных в опытах in vitro, предполагают, что условно механизм синтеза ДНК у Е. coli может быть подразделен на три этапа; инициацию, т.е. начало, элонгацию, т.е. продолжение, и терминацию, т.е. завершение (прекращение) синтеза. Каждый из этих этапов требует участия специфических ферментов и белковых факторов.

Этап I–инициация биосинтеза ДНК–является началом синтеза дочерних нуклеотидных цепей; в инициации участвует минимум восемь хорошо изученных и разных ферментов и белков. Первая фаза–это, как указано ранее, ферментативный биосинтез на матрице ДНК необычного затравочного олигорибонуклеотида (праймера) со свободной гидроксильной группой у С-3' рибозы. При инициации к цепям ДНК последовательно присоединяются ДНК-раскручивающие и ДНК-связывающие белки, а затем комплексы ДНК-полимераз и праймаз (см. рис. 13.3). Инициация представляется единственной стадией репликации ДНК, которая весьма тонко и точно регулируется, однако детальные механизмы ее до сих пор не раскрыты и в настоящее время интенсивно исследуются.

Этап II – элонгация синтеза ДНК–включает два кажущихся одинаковыми, но резко различающихся по механизму синтеза лидирующей и отстающей цепей на обеих материнских цепях ДНК. Синтез лидирующей цепи начинается с синтеза праймера (при участии праймазы) у точки начала репликации, затем к праймеру присоединяются дезоксирибонуклеотиды под действием ДНК-полимеразы III; далее синтез протекает непрерывно, следуя шагу репликационной вилки. Синтез отстающей цепи, напротив, протекает в направлении, обратном движению репликационной вилки и начинается фрагментарно. Фрагменты всякий раз синтезируются раздельно, начиная с синтеза праймера, который может переноситься с готового фрагмента при помощи одного из белковых факторов репликации в точку старта биосинтеза последующего фрагмента противоположно направлению синтеза фрагментов. Элонгация завершается отделением олигорибонуклеотидных праймеров, объединением отдельных фрагментов ДНК при помощи ДНК-лигаз и формированием дочерней цепи ДНК. Нельзя исключить, однако, возможности сопряженного и согласованного механизма синтеза лидирующей и отстающей цепей ДНК при участии полимераз и всего комплекса праймасом.

Этап III – терминация синтеза ДНК – наступает, скорее всего, когда исчерпана ДНК-матрица и трансферазные реакции прекращаются. Точность репликации ДНК чрезвычайно высока, возможна одна ошибка на 1010 трансферазных реакций, однако подобная ошибка обычно легко исправляется за счет процессов репарации.

Синтез ДНК на матрице РНК. Выдающимся достижением биохимии нуклеиновых кислот является открытие в составе онковирусов (вирус Раушера и саркомы Рауса) фермента обратной транскриптазы, или ревертазы (РНК-зависимая ДНК-полимераза), катализирующего биосинтез молекулы ДНК на матрице РНК. Накоплены данные о том, что многие РНК-содержащие онкогенные вирусы, получившие наименование онкорнавирусов, содержат ревертазу в составе покровных белков. Фермент открыт также во многих клетках прокариотов и эукариотов, в частности

486

в лейкозных клетках, пролиферирующих тканях, включая эмбриональные ткани. Ревертаза онкорнавирусов содержит ионы Zn2+ и активируется катионами Мn2+ и Mg2 + . Предполагают, что синтез ДНК на матрице РНК происходит в 3 этапа. На I этапе фермент ревертаза синтезирует на матрице вирусной РНК комплементарную цепь ДНК, что приводит к формированию гибридной молекулы. Второй этап–разрушение исходной вирусной РНК из комплекса гибридной молекулы под действием РНКазы. Наконец, на III этапе на матрице цепи ДНК комплементарно синтезируются новые цепи ДНК. Ревертазной активностью обладают и ДНК-полимеразы: например, фермент из Е. coli способен катализировать синтез ДНК на матрице рРНК.

Открытие обратной транскриптазы имеет большое значение не только для выяснения закономерностей процесса малигнизации, но и для всей науки о живом, поскольку указывает на возможность передачи наследственной информации от РНК на ДНК, не подчиняясь основному постулату (поток информации идет только в одном направлении):

ДНК>РНК>Белок.

В настоящее время можно дополнить эту основную схему передачи генетической информации в живой клетке и представить ее в более полной форме:

 

Транскрипция

 

Трансляция

ДНК

Обратная

РНК

Белок

 

 

 

Репликация

транскрипция

Репликация

 

 

 

На схеме стрелки вокруг ДНК и РНК указывают на возможность молекул копировать самих себя в живых системах при участии соответствующих ферментов. Как знать, не станем ли мы свидетелями открытия принципиальной возможности поворота стрелки и на следующей стадии–от белка на РНК, что могло происходить на Земле при зарождении первичных живых существ?

Биосинтез РНК

Поток генетической информации называется экспрессией генов. Он включает процесс транскрипции–биосинтез матричных РНК (как и других типов клеточных РНК) на молекуле ДНК, и процесс трансляции–биосинтез белка на мРНК, т.е. генетическая информация ДНК реализуется путем программированного через мРНК синтеза белков, определяющих в конечном счете фенотипические признаки живых организмов. Подсчитано, что около 90–95% ДНК E. coli экспрессируется в мРНК, хотя большая часть последней не кодирует синтеза белка; небольшая часть ДНК кодирует синтез двух других клеточных РНК, т.е. рРНК и тРНК. Транскрипция, несмотря на кажущуюся схожесть с репликацией, в частности химическим механизмом, направлением синтеза и использованием матрицы, отличается рядом особенностей: не требует синтеза праймера, использует не всю молекулу ДНК, а только ее отдельные короткие сегменты (отдельные гены или группы генов) и, наконец, требует наличия только одной из цепей ДНК в качестве матрицы, которая полностью сохраняется (при репликации ДНК она сохраняется наполовину). Геном каждой клетки человека состоит из 3,5•109

487

пар оснований; они могут обеспечить кодирование более 1,5•106 пар генов. Однако имеющиеся данные о количестве и разнообразии белков в организме человека (около 100000) свидетельствуют о том, что значительная часть генома человека не транскрибируется и соответственно не переводится на аминокислотную последовательность белков. Известно также, что определенная часть нетранслируемого генома человека выполняет регуляторную функцию в процессе экспрессии генов. В молекуле ДНК различают, кроме уникальных неповторяющихся последовательностей, содержащих кодирующие гены, также множество повторяющихся последовательностей (повторы), биологический смысл которых до сих пор неясен (см. далее).

Современные представления о механизме синтеза РНК в клетках в значительной степени обязаны открытию в 1960 г. в двух лабораториях США (Дж. Хервиц и С. Вейс) особого фермента–РНК-полимеразы, катализирующей синтез РНК из свободных нуклеозидтрифосфатов. Фермент требует наличия ионов Mg2+ или Мn2+ и одновременного присутствия всех 4 типов рибонуклеозидтрифосфатов (АТФ, ГТФ, ЦТФ и УТФ). Самым удивительным свойством фермента оказалось то, что для включения нуклеотидов в РНК необходимо обязательное присутствие предобразованной ДНК-матрицы *. При тщательном изучении механизма синтеза РНК при участии РНК-полимеразы, называемой также ДНК-зависимой РНК-полимеразой (транскриптазой), было установлено, что молекула предобразованной ДНК, необходимая для реакции полимеризации, полностью определяет последовательность рибонуклеотидов во вновь синтезированной молекуле РНК. Другими словами, на матрице ДНК комплементарно строится полирибонуклеотид, являющийся копией первичной структуры ДНК, с той только разницей, что вместо тимидилового нуклеотида ДНК в РНК включается уридиловый нуклеотид. Реакция синтеза РНК в общем виде может быть представлена следующим образом:

n1

АТФ

 

Р

АМФ n1

 

 

 

 

 

 

 

 

 

 

n2

ГТФ

Мg2+; ДНК-матрица

Н

ГМФn2

+(n1

+n2

+n3 +n4)РРi

n3

ЦТФ

РНН-полимераза

ЦМФ n3

К

 

 

 

n4 УТФ

 

УМФn4

 

 

 

 

 

 

 

 

В синтезируемой молекуле РНК

 

отдельные мононуклеотиды, как и

в ДНК, связаны между собой 3'-5'-фосфодиэфирными мостиками. Кроме того, сам механизм действия фермента РНК-полимеразы во многом совпадает с таковыми ДНК-полимеразы: синтез также идет в направлении 5'–>3', цепь РНК имеет полярность, противоположную цепи предобразованной ДНК. Однако выявлены и существенные различия. РНК-полимераза Е. coli предпочтительнее функционирует в присутствии нативной двухцепочечной ДНК; в опытах in vitro обе цепи ДНК копируются РНК-полимеразой; in vivo транскрибируется, вероятнее всего, только одна цепь ДНК. Предполагают, что РНК-полимераза связывается с одной цепью нативной ДНК в определенной точке, вызывая расплетение биспиральной структуры на ограниченном участке, где и происходит синтез РНК. Данные свидетельствуют, что у E. coli, скорее всего, имеется единственная ДНК-зави-

*Позже были открыты также ферменты (преимущественно в составе оболочек фагов

иу ряда бактерий), катализирующие синтез РНК на матрице РНК.

488

симая РНК-полимераза, которая катализирует синтез всех типов клеточных

РНК.

РНК-полимераза Е. coli изучена наиболее подробно. Это олигомерный фермент, состоящий из двух одинаковых α-субъединиц (мол. масса 36000), двух разных β (β1 и β2)-субъединиц (мол. масса соответственно 151000 и 155000), ω-субъединицы (мол. масса 11000) и σ-субъединицы; общая мол. масса фермента около 390000. Считают, что функция σ-субъединицы (σ-фактор)–узнавание определенного участка на матрице ДНК, названного промотором, к которому присоединяется РНК-полимераза. В результате образуется так называемый открытый комплекс фермента с ДНК: двухцепочечная структура ДНК раскрывается («плавится»). Далее на одной из нитей ДНК, как на матрице, синтезируется мРНК; синтез заканчивается в определенной точке в конце гена или прерывается под действием особых белков. Другим субъединицам фермента приписывают функцию инициации биосинтеза РНК (α-субъединицам) и основную каталитическую функцию (связывание субстратов и элонгация синтеза) – β-субъединицам. Кроме того, открыт ряд белков, принимающих участие в механизме синтеза РНК в клетке. В частности, исследуется природа репрессорных белков и белкатерминатора (ρ-фактора). Последний обладает способностью обратимо связываться с терминирующими участками ДНК (так называемые стопсигналы транскрипции), выключая действие РНК-полимеразы. При отсутствии этого белка образуются исключительно длинные цепи РНК.

У эукариот открыты три разные РНК-полимеразы (I, II и III) с большой молекулярной массой (от 500000 до 600000), каждая из которых наделена специфической функцией. РНК-полимераза I ответственна за синтез только рибосомных РНК (рРНК), точнее одного-единственного прерибосомного РНК-транскрипта, предшественника 5,8S, 18S и 28S рРНК; фермент связывается с разными промоторными участками. РНК-полимераза II–основ- ной фермент, катализирующий синтез матричной РНК (мРНК). Он наделен способностью распознавать огромное множество промоторных участков, многие из которых имеют специфические ключевые последовательности, являющиеся местами (сайтами) связывания транскрипционных белковых факторов. РНК-полимераза III катализирует преимущественно синтез транспортных РНК (тРНК), а также 5S рРНК и ряда других низкомолекулярных РНК со специфической функцией. У эукариот работу РНКполимеразы обеспечивает множество регуляторных белков (факторы транскрипции), объединенных вместе с ферментом в единый транскрипционный комплекс. В частности, открыты транскрипционные факторы типа J, активные только в виде идентичных димеров (J1J1 или J2J2) или разных димеров (J1J2); эти факторы кодируются отдельными генами и сами запускают работу ряда генов, регулирующих клеточное деление. В результате мутации генов, кодирующих синтез транскрипционных факторов, резко повышается прочность связывания J-факторов с ДНК, что обычно приводит к нерегулируемому опухолевому росту клеток.

Биогенез матричных РНК

Процесс образования молекулы мРНК на матрице ДНК–биогенез мРНК – в прокариотических клетках представляется относительно простым и включает главным образом транскрипцию соответствующего гена при участии РНК-полимеразы. Во многих случаях первичным продуктом экспрессии гена является молекула мРНК, уже способная к функционированию, т.е. у

489

прокариот транскрипция и трансляция являются сопряженными процессами. Биосинтез тРНК у прокариот из первичного тРНК транскрипта проходит стадию процессинга аналогично синтезу мРНК и тРНК у эукариот (см. далее).

Биогенез мРНК у эукариот существенно отличается не только механизмом регуляции транскрипции, но и многоступенчатостью формирования активной молекулы. До открытия феномена сплайсинга (от англ. splicing–созревание, сращивание) мРНК было известно, что многие мРНК эукариот синтезируются в виде гигантских высокомолекулярных предшественников (пре-мРНК), которые уже в ядре подвергаются посттранскрипционному процессингу. Предполагали, что процессинг включает удаление длинных 5'- и 3'-концевых участков, которые якобы выполняют регуляторные функции. Как оказалось, ген эукариот является не непрерывной, а мозаичной структурой, содержащей наряду с кодирующими (экзоны) также некодирующие (интроны) последовательности. Фермент РНК-полимераза катализирует транскрипцию как экзонов (от англ. exit – выход, поскольку продукты транскрипции–участки мРНК–выходят из ядра в цитоплазму и выполняют функцию матрицы в синтезе белка), так и интронов с образованием гетерогенной ядерной РНК (гяРНК), называемой также первичным транскриптом. Термин «интроны» означает вставочные, нетранслирующие последовательности нуклеотидов в ДНК эукариот. Этот термин применим и к вставочным нуклеотидным последовательностям первичного РНК-транскрипта.

С открытием интрон-экзонного строения генов, характерного для эукариотических клеток, начался новый этап исследований на пути реализации генетической информации. Транскрипция гена, состоящего из чередующихся кодирующих и некодирующих нуклеотидных последовательностей, обеспечивала полное его копирование и приводила к синтезу РНК-предшественника. Поэтому было высказано предположение о существовании между транскрипцией и трансляцией еще одного важного звена–образования пригодной для трансляции «зрелой» молекулы мРНК. Этот этап получил название процессинга, или созревания, мРНК.

К настоящему времени считается установленным, что процессинг мРНК включает три основных процесса: 1) кэпирование–химическая модификация 5'-концевой последовательности мРНК; 2) сплайсинг–удаление некодирующих интронных последовательностей из мРНК и сшивание образующихся экзонов; 3) полиаденилирование–химическая модификация 3'-концевой последовательности мРНК (рис. 13.5).

В осуществлении каждого из указанных процесов специфическое участие принимает ряд белков и нуклеиновых кислот, хотя конкретные молекулярные механизмы этих превращений еще не полностью раскрыты. Все три указанных процесса имеют важное значение в формировании зрелой молекулы мРНК. Однако наибольший интерес исследователи проявляют к выяснению молекулярного механизма сплайсинга, который должен обеспечить, во-первых, постепенное и высокоточное вырезание интронов из первичного транскрипта и, во-вторых, сшивание образующихся фрагмен- тов–экзонов–«конец в конец». Любые отклонения или смещения границ в процессе вырезания интронов и сшивания экзонов даже на один нуклеотид могут привести не только к глубокому искажению смысла в кодирующих последовательностях, но и к нарушению передачи генетической информации и развитию патологии.

Последовательность нуклеотидов в молекуле мРНК обычно начинается с пары 5'-ГУ и заканчивается парой АГ-3'. Эти последовательности,

490

Соседние файлы в папке Биологическая химия