
- •2. Линзы. Вывод формулы линзы. Построение изображений в линзе. Линзы
- •Вывод формулы линзы
- •Построение изображений в линзе
- •3.Интерференция света. Амплитуда при интерференции. Расчет интерференционной картины в опыте Юнга.
- •4. Пространственная и временная когерентность. Оценить радиус когерентности солнечного света близи поверхности Земли. Радиус Солнца равен; среднее расстояние до Земли.
- •6.Интерференция в тонких пленках.
- •7. Явление полного внутреннего отражения. Световоды.
- •8.Применение интерференции. Интерферометр Майкельсона.
- •9. Применение интерференции. Интерферометр Фабри-Перо.
- •10. Просветление оптики.
- •10. Метод зеркал Френеля для наблюдения итнтерференции света. Расчёт интерференционной картины.
- •Бизеркало Френеля
- •12.Дифракция света. Принцип Гюйгенса-Френеля. Метод зон Френеля. Дифракция Френеля на круглом отверстии и круглом диске. Графическое решение.
- •13.Дифракция на одной щели. Как влияет на дифракцию Фраунгофера от одной щели увеличение длины волны и ширины щели?
- •16.Дифракция рентгеновских лучей. Условия Вульфа-Брэггов.
- •17. Физические принципы получения и восстановления голограммы.
- •18. Поляризация при отражении и преломлении. Формулы Френеля.
- •19. Двойное лучепреломление. Его объяснение. Нарисуйте ход луча в двоякопреломляющем одноосном кристаллею. Поляризация при двойном лучепреломлении.
- •20. Интерференция поляризованных лучей.
- •Xод луча при нормальном и наклонном падении.
- •22. Анализ поляризованного света. Закон Малюса.
- •23. Искусственное двойное лучепреломление. Эффект Керра. Оптический метод определения напряжений в образце.
- •24. Вращение плоскости поляризации. Поляриметр-сахариметр.
- •25.Рассеяние света. Степень поляризации рассеянного света.
- •26. Дисперсия света. Электронная теория дисперсии. Ход белого луча в призме. Вывод формулы для угла отклонения лучей призмой.
- •27. Излучение Вавилова – Черенкова.
- •28. Эффект Доплера в оптике.
- •29. Тепловое излучение.
- •31. Вывод законов теплового излучения (законов Вина, Стефана-Больцмана) из формулы Планка.
- •32. Оптическая пирометрия. Пирометр с исчезающей нитью.
- •34. Фотоэффект. Законы ф-та. Объяснение ф-та. Зависимость максимальной кинетической энергии фотоэлектронов от частоты света.
- •35. Фотоэффект.
- •36. Противоречие законов фотоэффекта з-нам классической физики. Ур-е Эйнштейна для ф-та. Внутренний ф-т. Применение ф-та.
- •37. Эффект Комптона.
- •38. Давление света. Вывод формулы для давления света на основе фотонных представлений о свете.
- •39. Тормозное рентгеновское излучение. График зависимости интенсивности от напряжения на лучевой трубке.
- •41. Дискретность квантовых состояний, опыт Франка и Герца, интерпретация опыта; квантовые переходы, коэффициенты Эйнштейна для квантовых переходов. Связь между ними.
- •42. Ядерная модель атома.
- •43. Постулаты Бора. Теория атома водорода по Бору. Расчет энергетических состояний атома водорода с точки зрения теории Бора.
- •44. Пользуясь соотношением неопределённости Гейзенберга, оценить минимальную энергию электрона в атоме водорода.
- •46. Спектры щелочных элементов. Дуплетная структура спектров щелочных элементов.
- •47. Опыт Штерна и Герлаха.
- •48. Эффект Зеемана.
- •49. Застройка электронных оболочек. Периодическая система элементов Менделеева.
- •50. Характеристическое рентгеновское излучение. Закон Мозли. Дублетный характер рентгеновских спектров.
- •51. Молекулярные спектры.
- •52.Комбинационное рассеяние света.
- •53.Люминисценция. Определение. Правило Стокса.
- •54. Оптические квантовые генераторы. Свойства лазерного излучения.
- •2. Свойства лазерного излучения.
- •56. Нелинейная оптика.
- •57. Атомное ядро: состав, характеристики, модели, ядерные силы. Масса. Размеры ядер.
- •59. Ядерные реакции.
- •62. Фундаментальное взаимодействия. Элементарные частицы, их классификация, методы решения. Законы сохранения в физике элементарных частиц.
- •63.Космическое излучение.
- •61. Ядерный магн. Резонанс.
16.Дифракция рентгеновских лучей. Условия Вульфа-Брэггов.
Пространственной, или трехмерной, дифракционной решеткой называется такая оптически неоднородная среда, неоднородности которой периодически повторятся при изменении всех трех пространственных координат.
Пример пространственной дифракционной -
кристаллическая
решетка твердого тела. d1,d2,d3-периоды
решетки по трем осям координ.
которые
проведены вдоль трех ребер решетки.Условия
Лауэ-для
дифракционных max.
d1(cos
-
cos
)
=
n1
d2(cos
-
cos
0)=
n2
(1)
d3(cos
-
cos
0)=
n3
,
0,
0,
и
,
,
-углы
м/ж осями координат
и направлениями распростр.соответ-но
падающего и дифрагировавшего луча
света;n1,n2,n3-целые
числа, определ-го порядок max.
Из 3-х углов
,
,
(соотв.
,
0,
0)
независимыми. явл. 2-а угла т. к. они должны
удовлетворять одному геомитр. соотношению,
конкретный вид которого зависит от
углов м/ж осями координат
При
произвольно заданном направлении
падения монохроматического света на
пространственную дифрак. решетку -
нельзя найти знач.
,
,
,
которые удовлетворяли бы геометрическому
соотношению, и 3-м условиям Лауэ.
Исключение: max
нулевого порядка. Для наблюдения
дифракционного max
порядка (n1,n2,n3)
при заданных значениях углов
,
0,
0
необходимо,
чтобы длинна волны падающего света
имела определенные значения. Из (1)
,
что
(условие
оптической однородности среды) dмакс
- наибольшее из значений d1,d2,d3-
должны отсутствовать все дифракционные
max,
кроме нулевого (n1=n2=n3=0).
Вульф
и Брэгг - предложили простой метод
дифракции рентгеновского излучения в
кристаллах. Они исходили из предположения,
что дифракцию рентгеновского излучения
можно рассматривать как результат
отражения от системы параллельных
сетчатых плоскостей кристалла. АА1
и ВВ1 -
сетчатые плоскости кристалла. Абсолютный
показатель преломления всех сред для
рентгеновского излучения близок к
единице. Оптическая разность хода
=
2d
sin
=
n
-Условие
Брэгга - Вульфа.
-угол
м/ж падающими и отраженным лучами.
n=1..2…-
порядок дифракционного max.
17. Физические принципы получения и восстановления голограммы.
Голография – это безлинзовое получение и последующее восстановление оптического изображения путём востановления волнового фронта. Экспериментальное воплощение и дальнейшая разработка этого способа стали возможным после появления в 1960 г.источников света высокой степени когерентности - лазеров.
Для регистрации предметной волны (волны, идущей от предмета), используют ещё когерентную с ней волну, идущую от источника света (опорная волна). Идея голографирования состоит в том, что фотографируется распределение интенсивности в интерференционной картине, возникающей при суперпозиции волнового поля объекта и когерентной ему опорной волны известной фазы. Последующая дифракция света на зарегистрированном распределении почернений в фотослое восстанавливает волновое поле объекта и допускает изучение этого поля при отсутствии объекта.
Схема получения голограммы.(рис.а)
Лазерный пучок делится на две части, причём одна его часть отражается зеркалом на фотопластинку (опорная волна), а вторая попадает на фотопластинку, отразившись от предмета (предметная волна). Опорная и предметная волны накладываясь друг на друга, образуют на фотопластинке интерференционную картину. После проявления фотопластинки и получается голограмма - зарегистрированная на фотопластинке интерференционная картина, образованная при сложении опорной и предметной волн.
Для восстановления изображения (рис.б.) голограмма помещается в то же самое положение, где она находилась до регистрации. Её освещают опорным пучком того же лазера (вторая часть лазера прикрывается диафрагмой). В результате дифракции света на интерференционной структуре голограммы восстанавливается копия предметной волны, образующая объёмное мнимое изображение предмета, расположенное в том месте, где предмет находился при голографировании. Кроме того, восстанавливается ещё и действительное изображение, имеющее рельеф, обратный рельефу предмета, т.е. выпуклые места заменены вогнутыми, и наоборот (если наблюдение ведётся с права от голограммы).
Основные применения голографии.
Для измерения деформации или перемещения тел.
Для выявления структуры газовых потоков в аэродинамике.
Для устранения искажений в оптических системах.
Для изготовления дифракционных решёток.
Для получения оптических изображений.
Для опознавания образов в вычислительной технике.
Для хранения информации.
В радиолокации.