
- •4 Системы автоматического управления станками
- •4.1 Общие понятия
- •4.2 Классификация систем управления станками
- •4.3 Копировальные сау прямого действия
- •4.4 Системы управления с распределительными валами
- •4.5 Следящие сау
- •4.6 Системы циклового программного управления
- •4.7 Числовое программное управление (чпу)
- •4.8 Самоприспособляющиеся (адаптивные) системы управления
- •5 Станки токарной группы
- •5.1 Токарно-винторезные станки
- •5.2 Токарные станки
- •5.3 Револьверные (токарно-револьверные) станки
- •5.4 Лобовые (лоботокарные) станки
- •5.5 Карусельные (токарно-карусельные) станки
- •5.6 Токарно-затыловочные станки
- •5.7 Токарные станки с программным управлением
- •6 Фрезерные станки
- •7 Станки сверлильно-расточной группы
- •7.1 Сверлильные станки
- •7.1.1 Вертикально-сверлильные станки
- •7.1.2 Радиально-сверлильные станки
- •7.1.3 Станки для сверления глубоких отверстий
- •7.2 Расточные станки
- •7.2.1 Универсальные горизонтально-расточные станки
- •7.2.1.1 Общие сведения
- •7.2.1.2 Кинематика станка модели 262а
- •7.2.2 Координатно-расточные станки
- •7.2.3 Отделочно-расточные (алмазно-расточные) станки
- •8 Строгальные, долбёжные и протяжные станки
- •8.1 Строгальные и долбёжные станки
- •8.2 Протяжные станки
- •9 Станки для абразивной обработки
- •9.1 Шлифовальные станки
- •9.1.1 Круглошлифовальные станки
- •9.1.2 Внутришлифовальные станки
- •9.1.3 Бесцентровошлифовальные станки
- •9.1.4 Плоскошлифовальные станки
- •9.1.5 Правка шлифовальных кругов
- •9.1.6 Шлифовальные станки с чпу
- •9.2 Отделочные процессы и станки
- •9.2.1 Хонингование
- •9.2.2 Суперфиниширование
- •9.2.3 Притирка
- •9.3 Заточные станки
- •10 Станки для электрофизических и электрохимических методов обработки
- •10.1 Назначение и область применения станков
- •10.2 Электроэрозионные станки
- •10.3 Ультразвуковые станки
- •11 Зубообрабатывающие станки
- •11.1 Классификация станков
- •11.2 Способы работы станков
- •11.2.1 Способ копирования
- •11.2.2. Способ обката
- •11.3 Зубофрезерные станки
- •11.3.1 Компоновки станков
- •11.3.2 Кинематика станка модели 5к32
- •11.4 Зубодолбёжные станки
- •1 Об.Долбяка оборотов заготовки,
- •1 Дв.Ход.ДолбSрад мм/дв.Х
- •11.5 Станки для нарезания конических зубчатых колёс
- •11.5.1 Нарезание конических колес с прямыми зубьями
- •11.5.2 Нарезание конических колес с круговыми зубьями
- •11.6 Зубозакругляющие станки
- •11.7 Зубоотделочные станки
- •11.8 Зубообрабатывающие станки с чпу
- •12 Резьбофрезерные станки
- •13 Токарные автоматы и полуавтоматы
- •13.1 Токарные одношпиндельные автоматы
- •13.1.1 Фасонно-отрезные автоматы
- •13.1.2 Автоматы продольного точения
- •13.1.3 Токарно-револьверные автоматы
- •13.2 Токарные горизонтальные многошпиндельные автоматы последовательного действия
- •13.3 Токарные одношпиндельные полуавтоматы
- •13.4 Токарные многошпиндельные полуавтоматы (тмп). Шестишпиндельный полуавтомат мод. 1284
- •13.4.1 Назначение, принципы работы и компоновки полуавтоматов
- •13.4.3 Цикл работы станка мод. 1284
- •13.4.4 Устройство и работа отдельных механизмов и узлов полуавтомата
- •14 Агрегатные станки
- •15 Автоматические станочные линии
- •15.1 Основные понятия
- •15.2 Классификация автолиний
- •15.3 Типы и состав автоматических линий
- •15.4 Системы управления автолиниями
- •15.5 Транспортные устройства ал
- •16 Станки и станочные комплексы с числовым программным управлением
- •16.1 Станки с чпу. Обрабатывающие центры
- •16.1.1 Эффективность перехода в станках к чпу
- •16.1.2 Особенности устройства станков с чпу
- •16.1.3 Приводы подач станков с чпу
- •16.1.4 Датчики обратной связи
- •16.1.5 Шпиндельные группы станков с чпу
- •16.1.6 Накопители инструментов и обрабатываемых заготовок
- •16.1.7 Устройство, кинематика и работа обрабатывающего центра модели ир-500мф4
- •16.1.7.1 Назначение и возможности станка
- •16.1.7.2 Общее устройство и работа станка
- •16.1.7.3 Кинематика станка. Назначение гидроцилиндров
- •16.1.7.4 Устройство и работа некоторых механизмов станка
- •16.1.7.5 Цикл работы станка
- •А Цикл автоматической смены инструмента
- •Б Цикл автоматической смены спутников
- •16.2 Промышленные роботы
- •16.3 Гибкие производственные системы и интегрированные автоматизированные производства
- •17 Понятие об эксплуатации оборудования
15.3 Типы и состав автоматических линий
Для обработки корпусных деталей, требующих большого объёма сверлильно-расточных и фрезерных работ, часто применяются автолинии, состоящие из агрегатных станков. Это является экономически обоснованным, т.к. оказывается возможным использование для указанных целей станков однотипных конструкций и многоинструментной оснастки.
Линии из специальных станков применяются относительно редко. Это связано с тем, что стоимость и сроки освоения таких линий значительны, так как каждый станок линии полностью проектируется и в индивидуальном порядке изготовляется. Обычно такие линии применяются для несложных технологических процессов при небольшом числе операций. Из высокопроизводительных специальных станков, например, обычно компонуют автолинии для обработки деталей типа дисков.
Уменьшение капиталовложений и времени на изготовление и освоение линий обеспечивается при компоновке их из действующего оборудования, модернизированного соответствующим образом.
Для использования в условиях серийного производства создаются переналаживаемые автолинии. Под переналаживаемыми автоматическими линиями (в отличие от участков станков с ЧПУ) понимают станочные комплексы, предназначенные для последовательной обработки заранее определённой номенклатуры однотипных деталей.
Переход от производства одного изделия к производству другого трудноосуществим на автолиниях из обычных агрегатных и специальных станков. Такой переход возможен на линиях из типового универсального оборудования: автоматизированных токарных, сверлильных, фрезерных, зубообрабатывающих, шлифовальных и др. станков, приспособленных для встройки в автоматическую линию. Такого типа линии, например, линии из серийных токарно-копировальных станков, применяются для обработки валов; из токарных многорезцовых, протяжных и зубообрабатывающих станков – для шестерен и т.д. В автолиниях из агрегатных станков переналадка может быть осуществлена сменой шпиндельных коробок с кондукторными плитами у силовых головок. Замена в автолиниях обычных агрегатных станков на многооперационные и многоинструментные агрегатные станки повышает универсальность автолинии. Расширяется универсальность автолиний при использовании спутников, поскольку спутники для разных деталей могут быть выполнены с одинаковыми базовыми и посадочными размерами. При этом одна и та же транспортная система линии обеспечивает поток различных обрабатываемых изделий.
Для обработки многих деталей, а также узлов, создаются комплексные автолинии. На таких линиях, производится механическая обработка на различном оборудовании, а также заготовительные операции (включая холодную высадку, горячую штамповку и калибровку), термическая обработка, сборочные операции, мойка, сушка, антикоррозионная обработка, контрольные и упаковочные операции. Комплексные АЛ представляют по сути автоматизированные производства для полной обработки тех или иных деталей и узлов (рис. 15.4 и 15.5).
К примеру, комплекс автолиний для обработки головок цилиндров двигателя автомобиля "Москвич" включает 124 станка для фрезерования, сверления, резьбонарезания и др. механических операций, 6 сборочных машин и 26 специальных установок. В автоматическом цикле выполняются операции снятия заусенцев с кромок плоскостей и отверстий, запрессовка седел и втулок клапанов с предварительным нагревом головок и охлаждением сёдел клапанов, мойка и контроль герметичности и некоторые др. операции.
Снижение стоимости проектирования, изготовления, монтажа и отладки АЛ для колец подшипников, клапанов и толкателей двигателей, поршневых пальцев и др. деталей обеспечивается созданием типовых автоматических линий, а также расширением применения унифицированных узлов в линиях из агрегатных станков.
В типовых автолиниях уровень унификации весьма высок, так унификация в автолиниях для обработки клапанов составляет – по технологическому оборудованию 70-80 %, по транспортному – 85-95 %, а для автолиний по обработке колец подшипников – соответственно 75-90 и 80-95 %.
В связи с тем, что трудоёмкость сборки узлов составляет 20-30 % трудоёмкости их изготовления, создание автолиний для выполнения сборочных операций (см. рис. 15.4 и 15.5) является весьма актуальным. Такие автолинии находят широкое применение в массовом производстве.