
- •Учреждение образования Белорусский государственный университет информатики и радиоэлектроники
- •Общие сведения Сведения об эумк
- •Методические рекомендации по изучению дисциплины
- •Рабочая учебная программа
- •Учреждение образования
- •«Белорусский государственный университет
- •Информатики и радиоэлектроники»
- •Пояснительная записка
- •Содержание дисциплины
- •2. Перечень тем практических занятий, их содержание и объем в часах
- •3. Литература
- •3.2 Дополнительная
- •4. Контрольные работы, их характеристика
- •5. Учебно-методическая карта дисциплины
- •Теоретический раздел Лекция 1
- •1.1 Введение
- •1.2 Основные понятия
- •1.3 Аксиомы теории вероятностей
- •1.4 Непосредственный подсчет вероятностей
- •1.5 Основные комбинаторные формулы
- •Лекция 2
- •2.1 Геометрическое определение вероятностей
- •2.2 Теоремы сложения вероятностей
- •2.3 Условная вероятность
- •2.4 Зависимые и независимые события
- •2.5 Теоремы умножения вероятностей
- •2.6 Вероятность безотказной работы сети
- •Лекция 3
- •3.1 Формула полной вероятности
- •3.2 Формула Байеса
- •3.3 Теорема о повторении опытов
- •Формула Пуассона
- •Формулы Муавра-Лапласа
- •Лекция 4
- •4.1 Случайные величины. Закон распределения вероятностей
- •4.2 Функция распределения
- •4.3 Ряд распределения
- •4.4 Плотность распределения
- •Лекция 5
- •5.1 Числовые характеристики случайной величины
- •5.1.1 Математическое ожидание
- •5.1.2 Начальные моменты
- •5.1.3 Центральные моменты
- •5.1.4 Дисперсия
- •5.1.5 Среднее квадратическое отклонение
- •5.1.6 Мода
- •5.1.7 Медиана
- •6.2 Типовые законы распределения непрерывных случайных величин
- •6.2.1 Равномерное распределение
- •6.2.2 Экспоненциальное распределение
- •6.2.3 Нормальное распределение
- •Лекция 7
- •7.1. Закон распределения функции случайного аргумента
- •7.1.1 Монотонно возрастающая функция
- •7.1.2 Монотонно убывающая функция
- •7.1.3 Немонотонная функция
- •7.2 Числовые характеристики функции случайного аргумента
- •7.2.1 Характеристическая функция случайной величины
- •Лекция 8
- •8.1 Двухмерные случайные величины. Двухмерный закон распределения
- •8.1.1 Двухмерная функция распределения
- •8.1.2 Матрица распределения
- •8.1.3 Двухмерная плотность распределения
- •8.2 Зависимые и независимые случайные величины
- •8.3 Условные законы распределения
- •Лекция 9
- •9.1 Числовые характеристики двухмерных величин
- •9.1.1 Смешанные начальные моменты
- •9.1.2 Смешанные центральные моменты
- •9.1.3 Корреляционный момент
- •9.1.4 Коэффициент корреляции
- •9.2Условные числовые характеристики
- •9.2.1 Pегрессия
- •Лекция 10
- •10.1 Нормальный закон распределения на плоскости
- •10.2 Закон распределения функции двух случайных величин
- •10.3 Многомерные случайные величины
- •10.3.1 Функция распределения
- •10.3.2 Плотность распределения
- •10.3.3 Числовые характеристики
- •11.2.2 Теорема о дисперсии суммы
- •11.3 Числовые характеристики произведения случайных величин
- •11.3.1 Теорема о математическом ожидании произведения
- •11.3.2 Теорема о дисперсии произведения
- •Лекция 12
- •12.1 Закон больших чисел
- •12.1.1 Неравенство Чебышева
- •12.1.2 Теорема Чебышева
- •12.1.3 Теорема Бернулли
- •12.2 Центральная предельная теорема
- •Лекция 13
- •13.1 Математическая статистика. Основные понятия
- •13.2 Оценка закона распределения
- •13.2.1 Эмпирическая функция распределения
- •13.2.2 Статистический ряд распределения
- •13.2.3 Интервальный статистический ряд
- •13.2.4 Гистограмма
- •Лекция 14
- •14.1 Точечные оценки числовых характеристик
- •14.1.1 Оценка математического ожидания
- •14.1.2 Оценка начального момента
- •14.1.3 Оценка дисперсии
- •14.1.4 Оценка центрального момента
- •14.1.5 Оценка вероятности
- •14.2 Оценка параметров распределения
- •14.3 Интервальные оценки числовых характеристик
- •14.3.1 Доверительный интервал для математического ожидания
- •14.3.2 Доверительный интервал для дисперсии
- •14.3.3 Доверительный интервал для вероятности
- •Лекция 15
- •15.1 Проверка статистических гипотез
- •15.1.1 Проверка гипотезы о равенстве вероятностей
- •15.2 Критерии согласия
- •15.2.1 Критерий Пирсона
- •15.2.2 Критерий Колмогорова
- •Лекция 16
- •16.1 Статистическая обработка двухмерных случайных величин
- •16.1.1 Оценка корреляционного момента
- •16.2.1 Гипотеза о равенстве математических ожиданий
- •16.2.2 Гипотеза о равенстве дисперсий
- •16.2.3 Гипотеза о равенстве законов распределения
- •Лекция 17
- •17.1 Оценка регрессионных характеристик
- •17.1.1 Метод наименьших квадратов
- •Практический раздел Контрольные работы Указания по выбору варианта
- •Контрольная работа №1. Теория вероятностей Задача 1. Случайные события. Вероятность события Условия вариантов задачи
- •Методические указания
- •Основные комбинаторные формулы
- •Примеры
- •Задача 2. Теоремы сложения и умножения вероятностей Условия вариантов задачи
- •Методические указания
- •Примеры
- •Задача 3. Формула полной вероятности. Формула Байеса Условия вариантов задачи
- •Методические указания
- •Примеры
- •Задача 4. Формула Бернулли Условия вариантов задачи
- •Методические указания
- •Примеры
- •Задача 5. Дискретная случайная величина Условия вариантов задачи
- •Методические указания
- •Примеры
- •Задача 6. Непрерывная случайная величина Условия вариантов задачи
- •Методические указания
- •Примеры
- •Задача 7. Закон распределения функции случайного аргумента Условия вариантов задачи
- •Методические указания
- •Примеры
- •Задача 8. Двухмерные случайные величины Условия вариантов задачи
- •Методические указания
- •Примеры
- •Задача 9. Числовые характеристики суммы и произведения случайных величин Условия вариантов задачи
- •Методические указания
- •Примеры
- •Контрольная работа №2. Математическая статистика Задача 10. Обработка одномерной выборки Условие задачи
- •Методические указания
- •Оценка закона распределения
- •Точечные оценки числовых характеристик
- •Интервальные оценки числовых характеристик
- •Проверка статистических гипотез
- •Примеры
- •Задача 11. Обработка двухмерной выборки Условие задачи
- •Методические указания
- •Оценка регрессионных характеристик
- •Примеры
- •8,74746;
- •8,86278
Лекция 2
2.1 Геометрическое определение вероятностей
Классическое определение вероятности предполагает, что число элементарных исходов конечно. На практике встречаются опыты, для которых множество таких исходов бесконечно. Чтобы преодолеть недостаток классического определения вероятности, состоящий в том, что оно неприменимо к испытаниям с бесконечным числом исходов, вводят геометрические вероятности - вероятности попадания точки в область.
Пусть в некоторую область случайным образом бросается точка T, причем все точки области W равноправны в отношении попадания точки T.
Тогда за вероятность попадания точки T в область A принимается отношение
, (2.1)
где S(A) и S(W) — геометрические меры (длина, площадь, объем и т.д.) областей A и W соответственно.
2.2 Теоремы сложения вероятностей
Теорема сложения двух случайных событий. Вероятность суммы случайных событий А и В равна сумме вероятностей этих событий минус вероятность их совместного появления:
(2.2)
Доказательство:
Представим
события А,
В и
в виде суммы трех несовместимых событий:
Тогда на основании второй аксиомы
Выразим
из
равенства (*):
,
а
из
равенства (**):
.
Подставим
и
в выражение (***) и после преобразований
получим:
.
Теорема сложения для n случайных событий. Вероятность суммы n событий A1, ... , An равна
:
(2.3)
где
– число слагаемых в k-ой
сумме равно
,
т.е. перебираются все возможные сочетания
изk
слагаемых.
Доказательство. Используем метод математической индукции. Однако, для экономии времени и места, докажем переход от m слагаемых к m+1 для случая m = 2. Докажем, что
,
если
.
Обозначим
,
что и требовалось доказать.
На практике, с учетом того, что
,
вероятность суммыn
событий
(если n>2)
удобнее вычислять по формуле
. (2.4)
2.3 Условная вероятность
Ранее случайное событие определялось как событие, которое при осуществлении совокупности условий (опыта) может произойти или не произойти. Если при вычислении вероятности события никаких других ограничений, кроме этих условий, не налагается, то такую вероятность называют безусловной. Если же налагаются и другие дополнительные условия, то вероятность события называется условной.
Проводится опыт со случайным исходом, в результате которого возможны два события А и В. Условной вероятностью p(В/А) называется вероятность события В, вычисленная при условии ( в предположении), что событие А произошло.
2.4 Зависимые и независимые события
Событие А называется независимым от события В, если его вероятность не зависит от того, произошло В или нет, т.е. критерий независимости:
. (2.5)
В противном случае, т.е. когда критерий не выполняется, событие А зависит от события В.
Зависимость и независимость всегда взаимны, т.е. если событие А не зависит от события В (см. (2.5)), то и событие В не зависит от события А:
. (2.6)
2.5 Теоремы умножения вероятностей
Теорема умножения вероятностей для двух событий. Вероятность произведения двух событий равна вероятности одного из них, умноженной на условную вероятность второго при наличии первого.
. (2.7)
Доказательство.Докажем (2.7) для схемы случаев. Пусть в опыте возможны n несовместимых и равновозможных исходов. Событию А соответствует m исходов событию B - k исходов. В l исходах события А и В происходят одновременно.
Очевидно,
что
(см. (1.1)). Вычислим условную вероятностьp(ВА),
т.е. вероятность события В
в предположении, что А
произошло. Если известно, что событие
А произошло, то из ранее возможных n
случаев остаются возможными только те
m,
которые благоприятствовали событию А.
Из них l
благоприятны событию В
.
Аналогично вычислим условную вероятностьp(AB),
т.е. вероятность события A
в предположении, что B
произошло:
.Подставим
найденные вероятности в (2.7):
,
что и требовалось доказать. Очевидно, что безразлично, какое из событий считать первым, а какое вторым.
Теорема умножения вероятностей для n событий. Вероятность произведения n событий А1 …Аn равна
(2.8)
где
)
- вероятность появления событияAk,
при условии, что
события
в данном опыте произошли.
Доказательство.
Используем метод математической
индукции. Однако для экономии времени
и места докажем переход от m
сомножителей
к m+1
для случая m
= 2. Докажем, что
,
если
.
Обозначим
,
тогда
,
что и требовалось доказать.
Если события А1 …Аn независимы, то вероятность произведения равна произведению вероятностей этих событий:
, (2.9)
а
вероятность
появления
хотя бы одного событияА1,
А2...Аn
равна (см. (2. 4))
. (2.10)