
- •Учреждение образования Белорусский государственный университет информатики и радиоэлектроники
- •Общие сведения Сведения об эумк
- •Методические рекомендации по изучению дисциплины
- •Рабочая учебная программа
- •Учреждение образования
- •«Белорусский государственный университет
- •Информатики и радиоэлектроники»
- •Пояснительная записка
- •Содержание дисциплины
- •2. Перечень тем практических занятий, их содержание и объем в часах
- •3. Литература
- •3.2 Дополнительная
- •4. Контрольные работы, их характеристика
- •5. Учебно-методическая карта дисциплины
- •Теоретический раздел Лекция 1
- •1.1 Введение
- •1.2 Основные понятия
- •1.3 Аксиомы теории вероятностей
- •1.4 Непосредственный подсчет вероятностей
- •1.5 Основные комбинаторные формулы
- •Лекция 2
- •2.1 Геометрическое определение вероятностей
- •2.2 Теоремы сложения вероятностей
- •2.3 Условная вероятность
- •2.4 Зависимые и независимые события
- •2.5 Теоремы умножения вероятностей
- •2.6 Вероятность безотказной работы сети
- •Лекция 3
- •3.1 Формула полной вероятности
- •3.2 Формула Байеса
- •3.3 Теорема о повторении опытов
- •Формула Пуассона
- •Формулы Муавра-Лапласа
- •Лекция 4
- •4.1 Случайные величины. Закон распределения вероятностей
- •4.2 Функция распределения
- •4.3 Ряд распределения
- •4.4 Плотность распределения
- •Лекция 5
- •5.1 Числовые характеристики случайной величины
- •5.1.1 Математическое ожидание
- •5.1.2 Начальные моменты
- •5.1.3 Центральные моменты
- •5.1.4 Дисперсия
- •5.1.5 Среднее квадратическое отклонение
- •5.1.6 Мода
- •5.1.7 Медиана
- •6.2 Типовые законы распределения непрерывных случайных величин
- •6.2.1 Равномерное распределение
- •6.2.2 Экспоненциальное распределение
- •6.2.3 Нормальное распределение
- •Лекция 7
- •7.1. Закон распределения функции случайного аргумента
- •7.1.1 Монотонно возрастающая функция
- •7.1.2 Монотонно убывающая функция
- •7.1.3 Немонотонная функция
- •7.2 Числовые характеристики функции случайного аргумента
- •7.2.1 Характеристическая функция случайной величины
- •Лекция 8
- •8.1 Двухмерные случайные величины. Двухмерный закон распределения
- •8.1.1 Двухмерная функция распределения
- •8.1.2 Матрица распределения
- •8.1.3 Двухмерная плотность распределения
- •8.2 Зависимые и независимые случайные величины
- •8.3 Условные законы распределения
- •Лекция 9
- •9.1 Числовые характеристики двухмерных величин
- •9.1.1 Смешанные начальные моменты
- •9.1.2 Смешанные центральные моменты
- •9.1.3 Корреляционный момент
- •9.1.4 Коэффициент корреляции
- •9.2Условные числовые характеристики
- •9.2.1 Pегрессия
- •Лекция 10
- •10.1 Нормальный закон распределения на плоскости
- •10.2 Закон распределения функции двух случайных величин
- •10.3 Многомерные случайные величины
- •10.3.1 Функция распределения
- •10.3.2 Плотность распределения
- •10.3.3 Числовые характеристики
- •11.2.2 Теорема о дисперсии суммы
- •11.3 Числовые характеристики произведения случайных величин
- •11.3.1 Теорема о математическом ожидании произведения
- •11.3.2 Теорема о дисперсии произведения
- •Лекция 12
- •12.1 Закон больших чисел
- •12.1.1 Неравенство Чебышева
- •12.1.2 Теорема Чебышева
- •12.1.3 Теорема Бернулли
- •12.2 Центральная предельная теорема
- •Лекция 13
- •13.1 Математическая статистика. Основные понятия
- •13.2 Оценка закона распределения
- •13.2.1 Эмпирическая функция распределения
- •13.2.2 Статистический ряд распределения
- •13.2.3 Интервальный статистический ряд
- •13.2.4 Гистограмма
- •Лекция 14
- •14.1 Точечные оценки числовых характеристик
- •14.1.1 Оценка математического ожидания
- •14.1.2 Оценка начального момента
- •14.1.3 Оценка дисперсии
- •14.1.4 Оценка центрального момента
- •14.1.5 Оценка вероятности
- •14.2 Оценка параметров распределения
- •14.3 Интервальные оценки числовых характеристик
- •14.3.1 Доверительный интервал для математического ожидания
- •14.3.2 Доверительный интервал для дисперсии
- •14.3.3 Доверительный интервал для вероятности
- •Лекция 15
- •15.1 Проверка статистических гипотез
- •15.1.1 Проверка гипотезы о равенстве вероятностей
- •15.2 Критерии согласия
- •15.2.1 Критерий Пирсона
- •15.2.2 Критерий Колмогорова
- •Лекция 16
- •16.1 Статистическая обработка двухмерных случайных величин
- •16.1.1 Оценка корреляционного момента
- •16.2.1 Гипотеза о равенстве математических ожиданий
- •16.2.2 Гипотеза о равенстве дисперсий
- •16.2.3 Гипотеза о равенстве законов распределения
- •Лекция 17
- •17.1 Оценка регрессионных характеристик
- •17.1.1 Метод наименьших квадратов
- •Практический раздел Контрольные работы Указания по выбору варианта
- •Контрольная работа №1. Теория вероятностей Задача 1. Случайные события. Вероятность события Условия вариантов задачи
- •Методические указания
- •Основные комбинаторные формулы
- •Примеры
- •Задача 2. Теоремы сложения и умножения вероятностей Условия вариантов задачи
- •Методические указания
- •Примеры
- •Задача 3. Формула полной вероятности. Формула Байеса Условия вариантов задачи
- •Методические указания
- •Примеры
- •Задача 4. Формула Бернулли Условия вариантов задачи
- •Методические указания
- •Примеры
- •Задача 5. Дискретная случайная величина Условия вариантов задачи
- •Методические указания
- •Примеры
- •Задача 6. Непрерывная случайная величина Условия вариантов задачи
- •Методические указания
- •Примеры
- •Задача 7. Закон распределения функции случайного аргумента Условия вариантов задачи
- •Методические указания
- •Примеры
- •Задача 8. Двухмерные случайные величины Условия вариантов задачи
- •Методические указания
- •Примеры
- •Задача 9. Числовые характеристики суммы и произведения случайных величин Условия вариантов задачи
- •Методические указания
- •Примеры
- •Контрольная работа №2. Математическая статистика Задача 10. Обработка одномерной выборки Условие задачи
- •Методические указания
- •Оценка закона распределения
- •Точечные оценки числовых характеристик
- •Интервальные оценки числовых характеристик
- •Проверка статистических гипотез
- •Примеры
- •Задача 11. Обработка двухмерной выборки Условие задачи
- •Методические указания
- •Оценка регрессионных характеристик
- •Примеры
- •8,74746;
- •8,86278
Министерство образования Республики Беларусь
Учреждение образования Белорусский государственный университет информатики и радиоэлектроники
Факультет заочного обучения
Кафедра вычислительных методов и программирования
Электронный учебно-методический комплекс
по дисциплине
ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА
Для студентов специальности
1-39 01 01-01 Радиотехника (устройства и системы);
1-45 01 01 Многоканальные системы телекоммуникации;
1-45 01 03 Сети телекоммуникаций;
1-41 01 02 Микро- и наноэлектронные технологии и системы.
1-38 02 03 Техническое обеспечение безопасности.
Минск 2014
Общие сведения Сведения об эумк
Электронный учебно-методический комплекс по дисциплине «Теория вероятностей и математическая статистика» предназначен для студентов всех инженерных и инженерно-экономических специальностей вузов, а также может быть использован преподавателями и аспирантами.
Электронный учебно-методический комплекс составлен на основе рабочей учебной программы по курсу «Теория вероятностей и математическая статистик», утверждённой деканом факультета непрерывного и дистанционного обучения , регистрационный № УД 11‑XX‑YY/Р и рабочих учебных планов специальностей:
1-39 01 01-01 Радиотехника (устройства и системы);
1-45 01 01 Многоканальные системы телекоммуникации;
1-45 01 03 Сети телекоммуникаций;
1-41 01 02 Микро- и наноэлектронные технологии и системы.
1-38 02 03 Техническое обеспечение безопасности.
Составитель:
А.И. Волковец,доцент кафедры вычислительных методов и программирования Учреждения образования «Белорусский государственный университет информатики и радиоэлектроники», кандидат технических, доцент.
Рассмотрен и рекомендован к изданию на заседании кафедры ВМиП, протокол № __ от __.__.2010.
Одобрен и рекомендован к изданию методической комиссией факультета информационных технологий и управления, протокол № __ от __.__.2010.
Методические рекомендации по изучению дисциплины
В соответствии с учебным планом студенты дистанционной формы обучения экономических специальностей изучают курс «Теория вероятностей и математическая статистика».
Учебным планом по данному курсу предусмотрено изучение теоретических вопросов, практических задач по наиболее актуальным темам, выполнение 2-х контрольных работ. Изучение курса заканчивается сдачей экзамена. К сдаче экзамена студенты допускаются только при условии выполненных и защищенных контрольных работ.
Рекомендуется изучать курс «Теория вероятностей и математическая статистика» в соответствии с рабочей программой. Сначала необходимо ознакомиться с содержанием курса, затем изучить рекомендуемую литературу, обращая внимание на вопросы, выделенные в рабочей программе, после чего изучить теоретическое изложение курса по приведенным разделам, темам и вопросам, ответить на контрольные вопросы, решить задачи для выполнения контрольных работ в соответствии с заданием.
Так как теоретический материал излагается в строгой логической последовательности, рекомендуется изучать данную дисциплину, придерживаясь данной логики.