- •Введение
- •1. Основные этапы курсового проектирования
- •2. Расчет привода исполнительного механизма
- •2.1. Расчет и выбор электродвигателя
- •2.2. Разбивка передаточного числа по ступеням
- •3. Мощности, моменты на валах привода
- •4. Ременные передачи
- •4.1. Расчет ременных передач
- •4.2. Расчет сил ременных передач
- •4.3. Напряжения в ременных передачах
- •5. Цепные передачи
- •5.1. Расчет цепной передачи
- •5.2. Определение параметров звездочек
- •6. Зубчатые передачи. Выбор материалов зубчатых колес
- •7. Расчет коническо-цилиндрического редуктора
- •7.1. Расчет конической передачи
- •7.2. Расчет цилиндрической зубчатой передачи
- •7.3. Проверка зубьев колес по контактным напряжениям
- •8. Расчет червячных передач
- •8.1.Выбор материалов червяка и колеса
- •8.2. Определение основных параметров червячной передачи
- •8.3. Тепловой расчет червячного редуктора
- •9. Ориентировочный расчет валов
- •10. Расчет валов по эквивалентному моменту
- •10.1. Расчет быстроходного вала коническо-цилиндрического редуктора
- •10.2. Расчет промежуточного вала редуктора
- •11. Расчет валов зубчато-червячного редуктора
- •11.1. Расчет быстроходного вала зубчато-червячного редуктора
- •11.2. Расчет промежуточного вала
- •11.3. Расчет тихоходного вала зубчато-червячного редуктора
- •12. Расчет вала на прочность
- •13. Расчет и выбор подшипников качения быстроходного вала коническо-цилиндрического редуктора
- •14. Расчет и выбор подшипников качения тихоходного вала червячного редуктора
- •15. Расчет шпоночных соединений
- •16. Конструирование элементов корпуса редуктора
- •17. Смазочные устройства и уплотнения
- •18. Муфты
- •18.1. Муфты глухие
- •18.1.1. Муфта втулочная
- •18.1.2. Муфта фланцевая
- •18.2. Муфты компенсирующие
- •18.2.1. Муфта упругая втулочно-пальцевая
- •18.2.2. Муфта упругая со звездочкой
- •18.2.3. Муфта с торообразной оболочкой
- •18.2.4. Муфта зубчатая
- •18.2.5. Муфта шарнирная
- •18.3. Муфты управляемые
- •18.3.1. Муфта кулачковая
- •18.3.2. Муфта фрикционная
- •18.3.3. Конусная фрикционная муфта
- •18.3.4. Электромагнитная фрикционная муфта
- •18.4. Муфты предохранительные самоуправляемые
- •18.4.1. Муфта со срезным штифтом
- •18.4.2. Муфта фрикционная многодисковая
- •18.4.3. Муфта пружинно-шариковая
- •18.4.4. Муфта кулачковая предохранительная самодействующая
- •18.4.5. Центробежная муфта (колодочная)
- •18.4.6. Обгонная муфта
- •Библиографический список
- •Приложения
8.3. Тепловой расчет червячного редуктора
Червячный редуктор в связи с невысоким КПД и большим выделением теплоты проверяют на нагрев.
Мощность
на червяке
,
Вт.
Температура нагрева масла (корпуса) при установившемся тепловом режиме без искусственного охлаждения
.
Температура нагрева масла (корпуса) при охлаждении вентилятором:
,
где
0,3
– коэффициент, учитывающий отвод теплоты
от корпуса редуктора в металлическую
плиту или раму;
95...110
ºС – максимально допустимая температура
нагрева масла (зависит от марки масла).
Поверхность А м2 охлаждения корпуса равна сумме поверхностей всех ого стенок за исключение поверхности дна, которой корпус прилегает к плите или раме. Размеры стенок корпуса можно взять по эскизному проекту.
Приближенно площадь А м2 поверхности охлаждения корпуса можно принимать в зависимости от межосевого расстояния:
|
a, мм |
80 |
100 |
125 |
140 |
160 |
180 |
200 |
225 |
250 |
280 |
|
A, м2 |
0,16 |
0,24 |
0,35 |
0,42 |
0,53 |
0,65 |
0,78 |
0,95 |
1,14 |
1,34 |
Для
чугунных корпусов при естественном
охлаждении коэффициент теплоотдачи
Вт/м2·ºС
(большие значения при хороших условиях
охлаждения).
Коэффициент KTB при обдуве вентилятором:
|
nB |
750 |
1000 |
1500 |
3000 |
|
KTB |
24 |
29 |
35 |
50 |
Здесь nB – частота вращения вентилятора, мин–1. Вентилятор обычно устанавливают не валу червяка: nB = n
9. Ориентировочный расчет валов
Зубчатые колеса ,шкивы, звездочки и другие вращающиеся детали машин устанавливают на валах и осях.
Вал предназначен для передачи вращающего момента вдоль своей оси, а также для поддержания расположенных на нем деталей и восприятия действующих на них сил.
Ось только поддерживает установленные на ней детали и воспринимает действующие на эти детали силы, в отличие от вала ось не передает полезного вращающего момента и не испытывает кручения.
Для большинства валов применяют термически обрабатываемые стали марок 45 и 40Х, для высоконагруженных 40ХН, 30ХГСА.
Валы из этих марок подвергают улучшению, закалке с высоким отпуском или поверхностной закалке с нагревом на ТВЧ и низким отпуском.
Валы редуктора испытывают два вида деформации – деформацию кручения и деформацию изгиба. На данном этапе работы над курсовым проектом оценить деформацию изгиба не представляется возможным, поэтому валы рассчитывают только на деформацию кручения, но по пониженным допускаемым напряжениям /4, 8/.
Быстроходный вал редуктора:
Диаметр быстроходного вала редуктора:
,
где
=15
МПа – допускаемое напряжение для
быстроходного вала;
dб принимается в сторону увеличения на 2...5 мм больше. По этой же формуле определяются диаметры промежуточного и тихоходного валов редуктора с учетом соответствующего момента на валу.
10. Расчет валов по эквивалентному моменту
Основными силами действующими на валы, являются силы от передач.
Силы на валы передают через насаженные на них детали: зубчатые или червячные колеса, шкивы, звездочки, полумуфты и другие детали.
Передачу вращающего момента осуществляют соединениями: с натягом, шлицевыми, шпоночными и др.
Основными расчетными силовыми факторами являются вращающие Т и изгибающие М моменты..
Например в коническо-цилиндрическом редукторе определить диаметры валов по моменту изгибающему и крутящему в зависимости от сил, действующих в зацеплениях передач, ременных или цепных передач и реакции от этих сил в опорах (рис. 19).

Рис.19. Кинематическая схема привода
В зависимости от направления вращения валов и угла наклона зубьев цилиндрической передачи составляют расчетную схему на которую наносят все внешние силы, действующих на валы с учетом силы давления на входной вал редуктора от ременной передачи (рис. 20, 21).

Рис. 20. Схема сил в пространстве

Рис. 21. Схема сил, действующих на валы редуктора:
а) на главном виде;
б)на виде сверху показаны только окружные силы
В зависимости от действующих сил определяют реакции опор в горизонтальной и вертикальной плоскостях, строят эпюры изгибающих и отдельно эпюру крутящего момента.
