Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
santos-discrete_math_lecture_notes_2.pdf
Скачиваний:
23
Добавлен:
16.03.2016
Размер:
691.48 Кб
Скачать

36

Chapter 3

We then have

A = (B + C), B + AD, D = (B + C).

Using the identity

X = Y = X + Y,

we see that the output of the product of the following sentences must be 1:

(A + B + C)(B + AD)(D + B + C).

After multiplying the above product and simplifying, we obtain

B + CAD.

So, either Etienne is the murderer, or the following events occurred simultaneously: Franc¸ois lied, Franc¸ois was not drunk and the murder took place after midnight. But Maigret knows that AC = 0, thus it follows that E = 1, i.e., Etienne is the murderer.

Homework

 

 

 

146

Problem Construct the truth table for ( p = q) q.

 

 

147

 

 

Problem By means of a truth table, decide whether ( p q) (¬p) = p p). That is, you want to compare the outputs of ( p q) (¬p)

and p p).

 

 

 

148

Problem Explain whether the following assertion is true and negate it without using the negation symbol ¬:

 

 

n N m N n > 3 = (n + 7)2 > 49 + m

149

Problem Explain whether the following assertion is true and negate it without using the negation symbol ¬:

 

 

n N m N n2 > 4n = 2n > 2m + 10

 

150Problem Prove by means of set inclusion that (A B) ∩C = (A C) (B C).

151Problem Obtain a sum of products for the truth table

A

B

C

Z

0

0

0

1

0

0

1

1

0

1

0

1

0

1

1

1

1

0

0

0

1

0

1

0

1

1

0

0

1

1

1

0

 

 

 

 

152 Problem Use the Inclusion-Exclusion Principle to determine how many integers in the set {1, 2, . . . , 200} are neither divisible by 3 nor 7 but are divisible by 11.

Answers

146

p q

p = q ( p = q) q

F

F

T

F

F

T

T

T

T

F

F

F

T

T

T

T

 

 

 

 

36

Answers

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

37

147

The desired truth table is

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p q

 

p q ¬p p ¬p ( p q) (¬p)

 

 

 

F

F

 

 

F

 

 

T

 

T

 

 

T

 

 

 

F

T

 

 

F

 

 

T

 

T

 

 

T

 

 

 

T

F

 

 

F

 

 

F

 

T

 

 

F

 

 

 

T

T

 

 

T

 

 

F

 

T

 

 

T

 

148

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The assertion is true. We have

(n + 7)2 > 49 + m n2 + 14n > m.

 

 

 

Hence, taking m = n2 + 14n 1 for instance (or any smaller number), will make the assertion true.

150

We have,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x (A B) ∩C x (A B) x C

 

 

 

 

 

 

 

 

 

 

 

(x A x B) x C

 

 

 

 

 

 

 

 

 

 

 

(x A x C) (x B x C)

 

 

 

 

 

 

 

 

 

 

 

(x A C) (x B C)

which establishes the equality.

 

 

 

 

 

 

 

 

x (A C) (B C),

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

151

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

·

 

·

 

+

 

·

 

·C +

 

·B ·

 

+ A ·

 

·

 

 

 

 

 

 

A

B

C

A

B

A

C

B

C

152

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

37

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]