
- •«Национальный исследовательский
- •Томский политехнический Университет»
- •Е.В. Михеева, н.П. Пикула, а.П. Асташкина
- •Коллоидная химия
- •Оглавление
- •Глава 1 дисперсные системы
- •1.1. Общая характеристика дисперсных систем
- •1.1.1. Признаки объектов коллоидной химии
- •1.1.2. Специфические особенности высокодисперсных систем
- •1.2. Классификации дисперсных систем
- •1.2.1. Классификация по размерам частиц дисперсной фазы
- •1.2.2. Классификация по агрегатному состоянию дисперсной фазы и дисперсионной среды
- •1.2.3. Классификация по силе межфазного взаимодействия дисперсной фазы и дисперсионной среды
- •1.2.4. Классификация по подвижности частиц дф (по структуре)
- •1.2.5. Классификация по фазовой различимости
- •1.2.6. Классификация по топографическому признаку (по форме частиц)
- •1.3. Методы получения дисперсных систем
- •1.3.1. Диспергационные методы
- •1.3.2. Конденсационные методы
- •1.3.2.1. Физические конденсационные методы
- •1.3.2.2. Химические конденсационные методы
- •2. Реакции обмена
- •3. Реакции окисления
- •1.3.3. Метод пептизации
- •1.4. Методы очистки дисперсных систем
- •Вопросыи задания для самоконтроля
- •Глава 2 термодинамика поверхностных явлений
- •2.1. Классификация поверхностных явлений
- •2.2. Свободная поверхностная энергия и поверхностное натяжение
- •2.2.1. Физический смысл поверхностного натяжения
- •2.2.2. Термодинамическое определение поверхностного натяжения
- •2.2.3. Единицы измерения поверхностного натяжения
- •2.3. Влияние различных факторов на величину поверхностного натяжения
- •2.3.1. Влияние химической природы вещества
- •2.3.2. Влияние температуры
- •2.3.3. Влияние природы граничащих фаз
- •2.3.4. Влияние природы и концентрации растворенного вещества
- •2.4. Межмолекулярные и межфазные взаимодействия
- •2.4.1. Когезия
- •2.4.2. Адгезия
- •2.4.3. Растекание одной жидкости по поверхности другой
- •2.4.4. Смачивание
- •2.4.4.1. Анализ уравнения Юнга
- •2.4.4.2. Флотация
- •2.5. Особенности искривленной поверхности раздела фаз
- •2.5.1. Уравнение Лапласа
- •2.5.2. Капиллярное давление. Течение жидкости в капиллярах
- •2.6. Методы определения поверхностного натяжения
- •2.6.1. Метод наибольшего давления пузырька газа (метод Ребиндера)
- •2.6.2. Сталагмометрический метод (метод счета капель)
- •2.6.3. Метод капиллярного поднятия жидкости
- •2.7. Влияние кривизны поверхности на давление насыщенного пара
- •2.7.1. Уравнения Томсона (Кельвина)
- •2.7.2. Капиллярная конденсация
- •2.7.3. Изотермическая перегонка
- •Вопросыи задания для самоконтроля
- •Глава 3 адсорбция
- •3.1. Основные понятия и определения
- •3.1.1. Количественные способы выражения величины адсорбции
- •3.1.2. Классификации адсорбции
- •1. Классификация по природе границы раздела
- •2. Классификация по типу взаимодействия адсорбата и адсорбента
- •3.1.3. Основные экспериментальные зависимости адсорбции
- •3.2.Адсорбция на границе твердое тело – газ
- •3.2.1. Теория мономолекулярной адсорбции Лэнгмюра
- •3.2.2. Эмпирическое уравнение адсорбции Фрейндлиха
- •3.2.3. Теория полимолекулярной адсорбции Поляни
- •3.2.4. Дальнейшие представления о многослойной адсорбции. Теория бэт
- •3.2.5. Адсорбция на пористых адсорбентах
- •3.2.6.Адсорбенты и их характеристики
- •3.3.Адсорбция на границе жидкость – газ
- •3.3.1. Фундаментальное уравнение адсорбции Гиббса
- •3.3.2. Свойства поверхностно-активных (пав) и поверхностно-инактивных (пив) веществ
- •3.3.3. Строение адсорбционного слоя на границе раствор–газ
- •3.3.4. Уравнение Шишковского
- •3.3.5. Поверхностная активность. Правило Дюкло – Траубе
- •3.3.6. Расчет гиббсовской адсорбции из изотермы поверхностного натяжения методом графического дифференцирования
- •3.3.7.Применение уравнения изотермы Лэнгмюра к адсорбции на границе жидкость–газ. Расчет молекулярных характеристик исследуемого пав
- •3.3.8. Мицеллообразование в растворах коллоидных пав
- •3.3.9. Классификации пав
- •3.3.10. Солюбилизация
- •3.3.11. Практическое значение пав
- •3.3.12. Проблемы биоразлагаемости промышленных пав
- •3.4.Адсорбция на границе твердое тело – раствор
- •3.4.1. Молекулярная адсорбция
- •3.4.2. Ионная адсорбция
- •3.4.3. Ионообменная адсорбция. Ионный обмен
- •Вопросыи задания для самоконтроля
- •Глава 4 электрические свойства дисперсных систем
- •4.1. Электрокинетические явления
- •4.1.1. Механизм образования двойного электрического слоя
- •1. Неравенство электрохимических потенциалов ионов в кристаллической решетке твердого тела и ионов в растворе
- •Адсорбционный механизм образования дэс
- •Механизм поверхностной диссоциации
- •2. Специфическая адсорбции ионов на поверхности твердой фазы
- •3. Ориентированная адсорбция поверхностно-активных веществ
- •4.2. Теории строения двойного электрического слоя
- •4.2.1. Экспериментальные факты, послужившие основой для создания теорий строения дэс
- •4.2.2. Теория строения дэс Гельмгольца – Перрена
- •4.2.3. Теория строения дэс Гуи – Чэпмена
- •4.2.4. Современная теория строения дэс Штерна
- •4.3. Электрокинетический потенциал
- •4.3.1. Определение электрокинетического потенциала из электрокинетических явлений
- •4.3.2. Практическое значение электрокинетических явлений
- •4.4. Строение коллоидных мицелл
- •4.4.1. Примеры мицелл гидрофобных золей в природе
- •Вопросы и задания для самоконтроля
- •Глава 5 устойчивость и коагуляция лиофобных дисперсных систем
- •5.1. Основные понятия и определения
- •5.1.1. Факторы агрегативной устойчивости лиофобных систем
- •5.2. Коагуляция
- •Стадии коагуляции
- •5.2.1. Кинетика коагуляции. Теория кинетики быстрой коагуляции Смолуховского
- •5.2.2. Коагуляция золей электролитами
- •Эмпирические правила электролитной коагуляции
- •5.3. Теория устойчивости лиофобных дисперсных систем длфо
- •5.3.1. Расклинивающее давление
- •Составляющие расклинивающего давления
- •5.3.2. Энергия электростатического отталкивания
- •5.3.3. Энергия молекулярного притяжения
- •5.3.4. Потенциальные кривые взаимодействия частиц
- •5.4. Закономерности коагуляции гидрофобных золей электролитами
- •5.4.1. Особые явления при коагуляции
- •Коагуляция смесью электролитов
- •5.4.2. Примеры коагуляции. Образование почв
- •5.4.3. Физико-химические методы очистки сточных вод
- •Вопросыи задания для самоконтроля
- •Глава 6 структурно-механические свойства дисперсных систем
- •6.1. Типы структур
- •6.2. Реологические свойства дисперсных систем
- •6.2.1. Вязкость жидких дисперсных систем
- •Вопросыи задания для самоконтроля
- •Глава 7 оптические свойства дисперсных систем
- •7.1. Рассеяние света в дисперсных системах
- •7.2. Поглощение света в дисперсных системах
- •7.3. Окраска дисперсных систем
- •Вопросыи задания для самоконтроля
- •Глава 8 молекулярно-кинетические свойства дисперсных систем
- •8.1. Осмос
- •8.2. Диффузия
- •8.3. Броуновское движение
- •8.4. Седиментационное равновесие
- •8.5. Седиментационный анализ
- •Вопросы и задания для самоконтроля
- •Глава 9 краткая характеристика основных дисперсных систем
- •9.1. Системы с жидкой дисперсионной средой
- •9.1.1. Суспензии и золи
- •Классификация суспензий
- •Получение суспензий
- •Значение суспензий
- •9.1.2. Эмульсии
- •Классификация эмульсий
- •Агрегативная устойчивость эмульсии и природа эмульгатора
- •9.1.3. Пены
- •9.2. Системы с газообразной дисперсионной средой
- •9.2.1. Аэрозоли
- •Классификации аэрозолей
- •Агрегативная устойчивость аэрозолей. Коагуляция
- •Методы разрушения аэрозолей
- •9.3. Системы с твердой дисперсионной средой
- •Вопросыи задания для самоконтроля
- •Перечень используемой литературы
- •Коллоидная химия
- •В авторской редакции
- •Отпечатано в Издательстве тпу в полном соответствии с качеством предоставленного оригинал-макета
5.4.3. Физико-химические методы очистки сточных вод
Явление коагуляции тесно связано с проблемой удаления из водных сред различных загрязнений. В основе многих методов очистки от высокодисперсных седиментационно устойчивых загрязнений лежит явление потери системой агрегативной устойчивости путем объединения частиц под внесением специально вводимых реагентов: коагулянтов и флокулянтов. Это укрупнение частиц приводит к потере седиментационной устойчивости системы и образованию осадков.
В настоящее время подбор реагентов для коагуляции основывается преимущественно на эмпирических исследованиях. Чаще всего коагулирование загрязнений воды производится электролитами, которые содержат многозарядные ионы (Al3+, Fe3+ и др.).
Ранее процесс осветления воды объясняли нейтрализацией многовалентными катионами, заряженных, как правило, отрицательно, частиц природных вод. Однако коагуляция эти ионами связана с процессами их гидролиза, в результате которого возникают полиядерные аквагидрокомплексы, обладающие более сильной коагулирующей способностью, чем ионы. Они образуют также полимерные комплексы, близкие к полиэлектролитам, а сам процесс коагуляции подобен процессу флокуляции высокомолекулярных соединений.
Коагуляцию применяют в очистке сточных вод для ускорения процесса осаждения тонкодисперсных примесей и эмульгированных веществ. Коагуляция наиболее эффективна для удаления из воды коллоидно-дисперсных частиц размером 1–100 мкм. Коагуляция может происходить самопроизвольно или под влиянием физических или химических процессов. В процессе очистки сточных вод коагуляция происходит под влиянием добавляемых к ним специальных веществ – коагулянтов, которые в воде образуют хлопья гидроксидов металлов, частицы которых оседают под действием силы тяжести. Хлопья обладают способность улавливать коллоидные и взвешенные частицы и агрегировать их. Так как коллоидные частицы в воде чаще всего имеют отрицательный заряд, а хлопья коагулянтов положительный заряд, то между ними возникает взаимное притяжение.
Процесс гидролиза коагулянтов и образование хлопьев можно представить следующим образом:
В действительности процесс гидролиза протекает гораздо сложнее. Ион металла образует ряд промежуточных соединений в результате реакций с гидроксид-ионами и полимеризации. Образующиеся соединения имеют положительный заряд и легко адсорбируются отрицательно заряженными коллоидными частицами.
В качестве коагулянтов обычно используют соли алюминия, железа и их смеси. Выбор коагулянта зависит от его состава, физико-химических свойств и стоимости, концентрации примесей в воде, от рН и солевого состава воды.
В
качестве коагулянтов используют
,NaAlO2,
,FeCl3
и др. Совместное применение этих солей
дает возможность повысить эффект
осветления, увеличить плотность и
скорость осаждения хлопьев.
Соли железа как коагулянты имеют ряд преимуществ перед солями алюминия: более широкая область оптимальных значений рН, большая крупность образующихся хлопьев, способность устранять запахи и привкусы и др. При использовании смесей Al2(SO4)3 и FeCl3 в соотношении 1:1 или 1:2 достигается лучший результат коагулирования, чем при различном использовании реагентов, наблюдается синергизм электролитов.
В процессах водоочистки постепенно расширяется применение полимерных флокулянтов (ВМС): длинная молекула полимера адсорбируется двумя концами на двух разных частицах дисперсной фазы и соединяет их «мостиком». Получается рыхлый агрегат – флокула, в которой частицы не имеют непосредственного контакта между собой. В зависимости от количества вводимого флокулянта, он может обеспечивать как седиментационную неустойчивость в системе, так и ее стабилизацию.
Флокулянты бывают природными и синтетическими, неионогенными и ионогенными. В последнем случае флокуляция возможна не только по механизму мостикообразования, но и путем нейтрализации заряда частиц противоположно заряженными ионами полиэлектролита.
На практике часто эффективным оказывается совместное применение коагулянтов и флокулянтов.
Флокуляция – процесс агрегации взвешенных частиц при добавлении в сточную воду высокомолекулярных соединений, называемых флокулянтами. В отличие от коагуляции при флокуляции агрегация частиц происходит не только при непосредственном контакте частиц, но и в результате взаимодействия молекул адсорбированного на частицах флокулянта. Использование флокулянтов позволяет снизить дозы коагулянтов, уменьшить продолжительность процесса коагуляции и повысить скорость осаждения образующихся хлопьев.
Для очистки сточных вод используют природные (крахмал, декстрин, эфиры, целлюлозы и т.д.) и синтетические (полиакриламид) коагулянты.
Механизм действия флокулянтов основан на следующих явлениях: адсорбции молекул флокулянта на поверхности коллоидных частиц, ретикуляции (образовании сетчатой структуры) молекул флокулянта, слипание коллоидных частиц под действие сил Ван-дер-Ваальса. При действии флокулянтов между коллоидными частицами образуются трехмерные структуры, способные к более быстрому и полному отделению от жидкой фазы. Причиной возникновения таких структур является адсорбция макромолекул флокулянта на нескольких частицах с образованием между ними полимерных мостиков. Коллоидные частицы чаще заряжены отрицательно, что способствует процессу взаимной коагуляции с гидроксидом алюминия или железа.
Поскольку гидроксиды и сульфиды тяжелых металлов (цинка, меди, никеля, свинца, кадмия, кобальта и др.) в сточной воде образуют устойчивые коллоидные системы, то для интенсификации процесса их осаждения необходимо вводить коагулянты и флокулянты. Коллоидные частицы сульфидов имеют отрицательный заряд, поэтому для коагуляции сульфидов используют электролиты с многозарядными катионами – сульфаты алюминия или трехвалентного железа. При коагуляции гилроксидов требуется электролит с многозарядным анионом, т.к. коллоидные частицы заряжены положительно. Хорошими коагулянтами гидроксидов являются сульфат-ионы. Помимо электролитной коагуляции на практике часто используют взаимную коагуляцию коллоидных растворов с противоположным зарядом частиц. Для ускорения процесса коагуляции используют флокулянты, в основном полиакриламид. Добавка его в количестве 0,01 % от массы сухого вещества увеличивает скорость выпадения осадков гидроксидов металлов в 2-3 раза.