Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Fizika-Khuizika.doc
Скачиваний:
18
Добавлен:
14.03.2016
Размер:
851.97 Кб
Скачать

16 Ядерные реакции

Ядерными реакциями называют процессы превращения атомных ядер, вызванные их взаимодействием друг с другом или с элементарными частицами. При записи ядерной реакции слева пишется сумма исходных частиц, затем ставится стрелка, а за ней сумма конечных продуктов. Например, Эту же реакцию можно записать в более короткой символической форме При рассмотрении ядерных реакций используются точные законы сохранения: энергии, импульса, момента импульса, электрического заряда и другие. Если в качестве элементарных частиц в ядерной реакции фигурируют только нейтроны, протоны и γ – кванты, то в процессе реакции сохраняется и число нуклонов. Тогда должны соблюдаться баланс нейтронов и баланс протонов в начальном и конечном состояниях. Для реакции  получим: - число протонов 3 + 1 = 0 + 4; - число нейтронов 4 + 0 = 1 + 3. Пользуясь этим правилом можно идентифицировать одного из участников реакции, зная остальных. Достаточно частыми участниками ядерных реакций являются α – частицы ( - ядра гелия), дейтроны ( - ядра тяжелого изотопа водорода, содержащие кроме протона по одному нейтрону) и тритоны ( - ядра сверхтяжелого изотопа водорода, содержащие кроме протона два нейтрона). Разность энергий покоя начальных и конечных частиц определяет энергию реакции. Она может быть как больше нуля, так и меньше нуля. В более полной форме рассмотренная выше реакция записывается так: где Q – энергия реакции. Для ее расчета с помощью таблиц свойств ядер сравнивают разность суммарной массы исходных участников реакции и суммарной массы продуктов реакции. Затем полученная разность масс (обычно выраженную в а.е.м.) пересчитывается в энергетические единицы (1 а.е.м. соответствует 931,5 МэВ).

17 Элементы зонной теории кристаллов. Металлы, диэлектрики и полупроводники

Зонная теория твердых тел позволила с единой точки зрения истолковать существование металлов, диэлектриков и полупроводников, объясняя различие в их электрических свойствах, во-первых, неодинаковым заполнением электронами разрешенных зон и, во-вторых, шириной запрещенных зон.

Степень заполнения электронами энергетических уровней в зоне определяется заполнением соответствующих атомных уровней. Если при этом какой-то энергетический уровень полностью заполнен, то образующаяся энергетическая зона также заполнена целиком. В общем случае можно говорить о валентной зоне, которая полностью заполнена электронами и образована из энергетических уровней внутренних электро­нов свободных атомов, и о зоне проводимости (свободной зоне), которая либо частично заполнена электронами, либо свободна и образована из энергетических уровней внеш­них «коллективизированных» электронов изолированных атомов.

В зависимости от степени заполнения зон электронами и ширины запрещенной зоны возможны четыре случая, изображенные на рис. 314. На рис. 314, а самая верхняя зона, содержащая электроны, заполнена лишь частично, т. е. в ней имеются вакантные уровни. В данном случае электрон, получив сколь угодно малую энергетическую «добавку» (например, за счет теплового движения или электрического поля), сможет перейти на более высокий энергетический уровень той же зоны, т. е. стать свободным и участвовать в проводимости. Внутризонный переход вполне возможен, так как, например, при 1 К энергия теплового движения kT10–4 эВ, т. е. гораздо больше разности энергий между соседними уровнями зоны (примерно 10–22 эВ). Таким образом, если в твердом теле имеется зона, лишь частично заполненная электронами, то это тело всегда будет проводником электрического тока. Именно это свойственно металлам.

Твердое тело является проводником электрического тока и в том случае, когда валентная зона перекрывается свободной зоной, что в конечном счете приводит к не полностью заполненной зоне (рис. 314, б). Это имеет место для щелочноземельных элементов, образующих II группу таблицы Менделеева (Be, Mg, Ca, Zn, ...). В данном случае образуется так называемая «гибридная» зона, которая заполняется валентными электронами лишь частично. Следовательно, в данном случае металлические свойства щелочноземельных элементов обусловлены перекрытием валентной и свободной зон.

Помимо рассмотренного выше перекрытия зон возможно также перераспределение электронов между зонами, возникающими из уровней различных атомов, которое может привести к тому, что вместо двух частично заполненных зон в кристалле окажутся одна полностью заполненная (валентная) зона и одна свободная зона (зона проводимости). Твердые тела, у которых энергетический спектр электронных состоя­ний состоит только из валентной зоны и зоны проводимости, являются диэлектриками или полупроводниками в зависимости от ширины запрещенной зоны Е.

Если ширина запрещенной зоны кристалла порядка нескольких электрон-вольт, то тепловое движение не может перебросить электроны из валентной зоны в зону прово­димости и кристалл является диэлектриком, оставаясь им при всех реальных тем­пературах (рис. 314, в). Если запрещенная зона достаточно узка (Епорядка 1 эВ), то переброс электронов из валентной зоны в зону проводимости может быть осуществлен сравнительно легко либо путем теплового возбуждения, либо за счет внешнего источника, способного передать электронам энергию Е, и кристалл является полупровод­ником (рис. 314, г).

Различие между металлами и диэлектриками с точки зрения зонной теории состоит в том, что при 0 К в зоне проводимости металлов имеются электроны, а в зоне проводимости диэлектриков они отсутствуют. Различие же между диэлектриками и полупроводниками определяется шириной запрещенных зон: для диэлектриков она довольно широка (например, для NaCl Е=6 эВ), для полупроводников — достаточно узка (например, для германия Е=0,72 эВ). При температурах, близких к 0 К, полупроводники ведут себя как диэлектрики, так как переброса электронов в зону проводимости не происходит. С повышением температуры у полупроводников растет число электронов, которые вследствие теплового возбуждения переходят в зону проводимости, т. е. электрическая проводимость проводников в этом случае увеличивается.

18. Квантовые статистики Бозе-Энштейна и Ферми-Дирака.

Одним из важнейших «объектов» изучения квантовой статистики, как и классической, является идеальный газ. Это связано с тем, что во многих случаях реальную систему можно в хорошем приближении считать идеальным газом. Состояние системы невзаимодействующих частиц задается с помощью так называемых чисел заполнения Ni - чисел, указывающих степень заполнения квантового состояния (характеризуется данным набором i квантовых чисел) частицами системы, состоящей из многих тождест венных частиц. Для систем частиц, образованных бозонами - частицами с нулевым или целым спином (см. § 226), числа заполнения могут принимать любые целые значения: 0, 1, 2, ... (см. § 227). Для систем частиц, образованных фермионами - частицами с полуцелым спином (см. § 226), числа заполнения могут принимать лишь два значения: 0 для свободных состояний и 1 для занятых (см. § 227). Сумма всех чисел заполнения должна быть равна числу частиц системы. Квантовая статистика позволяет подсчитать среднее число частиц в данном квантовом состоянии, т. е. определить средние числа заполнения Ni.

Идеальный газ из бозонов - бозе-газ - описывается квантовой статистикой Бозе - Эйнштейна*. Распределение бозонов по энергиям вытекает из так называемого большого канонического распределения Гиббса (с переменным числом частиц) при условии, что число тождественных бозонов в данном квантовом состоянии может быть любым (см. § 227):

 (235.1)

 Это распределение называется распределением Боэе - Эйнштейна. Здесь Ni  - среднее число бозонов в квантовом состоянии с энергией Ei, k - постоянная Больцмана, T-термодинамическая температура,  -химический потенциал;  не зависит от энергии, а определяется только температурой и плотностью числа частиц. Химический потенциал находится обычно из условия, что сумма всех Ni  равна полному числу частиц в системе. Здесь   0, так как иначе среднее число частиц в данном квантовом состоянии отрицательно, что не имеет физического смысла. Он определяет изменение внутренней энергии системы при добавлении к ней одной частицы при условии, что все остальные величины, от которых зависит внутренняя энергия (энтропия, объем), фиксированы.

Идеальный газ из фермионов - фермн-газ - описывается квантовой статистикой Ферми - Дирака**. Распределение фермионов по энергиям имеет вид

 (235.2)

где Ni  - среднее число фермионов в квантовом состоянии с энергией Еi,  - химический потенциал. В отличие от (235.1)  может иметь положительное значение (это не приводит к отрицательным значениям чисел Ni). Это распределение называется распределением Ферми - Дирака.

 (235.3) (235.4)

Таким образом, при высоких температурах оба «квантовых» газа ведут себя подобно классическому газу.

Система частиц называется вырожденной, если ее свойства существенным образом отличаются от свойств систем, подчиняющихся классической статистике. Поведение как бозе-газа, так и ферми-газа отличается от классического газа, они являются вырожденными газами. Вырождение газов становится существенным при весьма низких температурах и больших плотностях. Параметром вырождения называется величина А. При A << 1, т. е. при малой степени вырождения, распределения Бозе - Эйнштейна (235.1) и Ферми - Дирака (235.2) переходят в классическое распределение Максвелла - Больцмана (235.3).

Температурой вырождения Т0 называется температура, ниже которой отчетливо проявляются квантовые свойства идеального газа, обусловленные тождественностью частиц, т. е. T0 - температура, при которой вырождение становится существенным. Если Т >> T0, то поведение системы частиц (газа) описывается классическими законами.

 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]