
- •17) Основные понятия и определения колебательных процессов. Механические колебания. Гармонические колебания. Незатухающие колебания.
- •18) Затухающие колебания. Вынужденные колебания. Резонанс. Автоколебания.
- •19) Механические (упругие) волны. Основные характеристики волн. Уравнение плоской волны. Поток энергии и интенсивность волны. Вектор Умова.
- •20) Внутреннее трение(вязкость жидкости). Формула Ньютона. Ньютоновские и неньютоновские жидкости. Ламинарное и турбулентное течения жидкости. Формула Гагена-Пуазейля.
- •21) Звук. Виды звуков. Физические хар-ки звука. Хар-ки слухового ощущения и их связь с физ хар-ми звука. Шкала уровней интенсивности звука.
- •22) Закон Вебера-Фехнера. Шкала уровней громкости звука. Кривые равной громкости.
- •23) Ультразвук. Источники и приемники ультразвука, его основные свойства. Ультразвуковая эхолокация.
- •24) Действие ультразвука на вещество, клетки и ткани организма. Применение ультразвука в медицине.
- •25) Эффект Доплера и его использование в медико-биологических исследованиях.
- •34) Полное и полезное увеличение микроскопа. Ход лучей в микроскопе. Апертурная дифрагма и апертурный угол.
- •35) Поглощение света. Закон Бугера. Закон Бугера-Бера. Концентрационная колориметрия. Нефелометрия.
- •36) Рассеяние света. Явление Тиндаля. Молекулярное рассеяние, закон Рэлея. Комбинационное рассеяние.
- •37) Свет естественный и поляризованный.Поляризатор и анализатор. Закон Малюса
- •38) Поляризация света при отражении и преломлении на границе двух диэлектриков. Закон Брюстера.
- •39) Поляризацияя света при двойном лучепреломлении. Призма Николя. Вращение плоскости поляризации. Закон Био.
- •40) Тепловое излучение. Законы теплового излучения. Формула Планка.
- •41)Излучение солнца. Инфракрасное и ультрафиолетовое излучения и их применение в медицине.
- •42) Теплоотдача организма. Физические основы термографии.
- •43) Люминесценция, ее виды. Механизм и свойства люминесценции. Правило Стокса.
- •44) Применение люминофоров и люминесцентного анализа в медицине.
- •45) Вынужденное излучение. Инверсная заселенность уровней. Основные элементы лазера.
- •46) Устройство и принцип работы рубинового и гелий-неонового лазеров.
- •47) Свойства лазерного излучения. Применение лазерного излучения в медицине.
- •48) Рентгеновское излучение. Устройство рентгеновской трубки. Тормозное рентгеновское излучение. Характеристическое рентгеновское излучение. Закон Мозли.
- •49) Первичные процессы взаимодействия рентгеновского излучения с веществом: когерентное рассеяние, комптон-эффект, фотоэффект.
- •51) Явление радиоактивности. Виды радиоактивного распада. Основной закон радиоактивного распада.
- •52) Альфа-распад ядер и его способности. Бета-распад ядер, его виды, особенности и спектр. Гамма излучение ядер.
- •53) Взаимодействие ионизирующего излучения с веществом.
- •57) Дозиметрия ионизирующего излучения. Поглощенная и экспозиционная дозы. Мощность дозы.
- •58) Количественная оценка биологического действия ионизирующего излучения. Коэффициент качества излучения. Эквивалентная доза.
- •59) Первичное действие ионизирующих излучений на организм. Защита от ионизирующих излучений.
40) Тепловое излучение. Законы теплового излучения. Формула Планка.
Тепловое излучение - электромагнитное излучение, испускаемое веществом и возникающее за счет его внутренней энергии.
Тепловое излучение обусловливается возбуждением частиц вещества при соударениях в процессе теплового движения или ускоренным движением зарядов (колебания ионов кристаллической решетки, тепловое движение свободных электронов и т.д.). Оно возникает при любых температурах и присуще всем телам. Характерной чертой теплового излучения является сплошной спектр.
Интенсивность излучения и спектральный состав зависят от температуры тела, поэтому не всегда тепловое излучение воспринимается глазом как свечение. Например, тела, нагретые до высокой температуры, значительную часть энергии испускают в видимом диапазоне, а при комнатной температуре почти вся энергия испускается в инфракрасной части спектра.
Закон Кирхгофа - отношение испускательной способности тела к его поглощательной способности одинаково для всех тел и равно спектральной плотности энергетической светимости абсолютно черного тела:
|
Закон Стефана-Больцмана - энергетическая светимость абсолютно черного тела пропорциональна четвертой степени его абсолютной температуры:
При повышении температуры максимум испускательной способности смещается влево
В 1900 г. М. Планк получил формулу для расчета испускательной способности абсолютно черного тела теоретически. Для этого ему пришлось отказаться от классических представлений о непрерывности процесса излучения электромагнитных волн. По представлениям Планка, поток излучения состоит из отдельных порций - квантов, энергии которых пропорциональны частотам света:
|
41)Излучение солнца. Инфракрасное и ультрафиолетовое излучения и их применение в медицине.
Основным источником теплового излучения в природе является Солнце. Спектральный состав солнечного излучения соответствует излучению абсолютно черного тела при температуре порядка 6000 К. Полная плотность потока солнечного излучения на верхней границе земной атмосферы составляет 1,93 кал/см2∙мин и называется солнечной постоянной.
При прохождении через атмосферу мощность солнечного излучения уменьшается.
В зависимости от состояния атмосферы и высоты Солнца над горизонтом, уменьшается также и солнечная постоянная. Изменяется и спектральный состав излучения.
Так, УФ-излучение поглощается озоном верхних слоев атмосферы, а часть длинноволнового ИК-излучения поглощается водяным паром
Из искусственных источников света по спектру ближе всего к Солнцу подходит электрическая дуга, излучение которой ранее использовалось для лечебных целей. В настоящее время в медицине применяются более удобные в эксплуатации источники инфракрасного и ультрафиолетового излучения, по возможности воспроизводящие соответствующие участки солнечного спектра.
Электромагнитное излучение, занимающее спектральную область (от красной границы видимого света до коротковолнового радиоизлучения) называется инфракрасным (ИК) излучением.
В медицине применяется более коротковолновая часть ИК-излучения. ИК-излучение невидимо для глаза. Основное его действие – тепловое, но может вызывать и химические реакции, например, действует на специальную фотоэмульсию. При фотографировании в ИК-лучах становятся видимы детали предметов, не заметные при обычной фотографии.
Первичное действие ИК-излучения на организм состоит в прогревании поверхностно лежащих тканей; при этом излучение проникает в ткани на глубину до 2 см.
В лечебной практике в качестве источников инфракрасного излучения используются специальные облучатели
Лампа Минина представляет собой лампу накаливания с рефлектором, локализующим излучение в необходимом направлении. Источником излучения служит лампа накаливания мощностью 20-60 Вт из бесцветного или синего стекла.
Светотепловая ванна представляет собой полуцилиндрический каркас, состоящий из двух половин, соединенных подвижно между собой. На внутренней поверхности каркаса, обращенной к пациенту, укреплены лампы накаливания мощностью 40 Вт. В таких ваннах на биологический объект действуют инфракрасное и видимое излучения, а также нагретый воздух, температура которого может достигать 70°С.
Лампа Соллюкс представляет собой мощную лампу накаливания, помещенную в специальный рефлектор на штативе. Источником излучения служит лампа накаливания мощностью 500 Вт (температура вольфрамовой нити 2 800°С, максимум излучения приходится на длину волны 2 мкм).
Электромагнитное излучение, занимающие спектральную область от 380 нм до 10 нм (от фиолетовой границы видимого света до длинноволнового рентгеновского излучения) называется ультрафиолетовым (УФ) излучением.
УФ-излучение поглощается простым стеклом, а при длине волны меньше 200 нм поглощается тонким слоем любого вещества, включая воздух. Поэтому дальнее УФ-излучение для медицины интереса не представляет.
УФ-излучение оказывает сильное биологическое действие на живые организмы, которое может быть и полезным, и вредным. Его первичное действие связано с фотохимическими реакциями, происходящими в тканях при поглощении излучения. В ткани оно проникает на глубину до 1 мм и проявляется на месте воздействия эритемой.
В соответствии с особенностями биологического действия выделяют следующие зоны УФ-излучения:
Зона А (380-315 нм) – антирахитная – отличается укрепляющим и закаливающим организм действием. Используется в профилактических и гигиенических целях.
Зона В (315-280 нм) – эритемная – характеризуется эритемным действием и используется в лечебных целях.
Зона С (280-200 нм) – бактерицидная – отличается бактерицидным действием; используется в качестве средства дезинфекции.