- •17) Основные понятия и определения колебательных процессов. Механические колебания. Гармонические колебания. Незатухающие колебания.
- •18) Затухающие колебания. Вынужденные колебания. Резонанс. Автоколебания.
- •19) Механические (упругие) волны. Основные характеристики волн. Уравнение плоской волны. Поток энергии и интенсивность волны. Вектор Умова.
- •20) Внутреннее трение(вязкость жидкости). Формула Ньютона. Ньютоновские и неньютоновские жидкости. Ламинарное и турбулентное течения жидкости. Формула Гагена-Пуазейля.
- •21) Звук. Виды звуков. Физические хар-ки звука. Хар-ки слухового ощущения и их связь с физ хар-ми звука. Шкала уровней интенсивности звука.
- •22) Закон Вебера-Фехнера. Шкала уровней громкости звука. Кривые равной громкости.
- •23) Ультразвук. Источники и приемники ультразвука, его основные свойства. Ультразвуковая эхолокация.
- •24) Действие ультразвука на вещество, клетки и ткани организма. Применение ультразвука в медицине.
- •25) Эффект Доплера и его использование в медико-биологических исследованиях.
- •34) Полное и полезное увеличение микроскопа. Ход лучей в микроскопе. Апертурная дифрагма и апертурный угол.
- •35) Поглощение света. Закон Бугера. Закон Бугера-Бера. Концентрационная колориметрия. Нефелометрия.
- •36) Рассеяние света. Явление Тиндаля. Молекулярное рассеяние, закон Рэлея. Комбинационное рассеяние.
- •37) Свет естественный и поляризованный.Поляризатор и анализатор. Закон Малюса
- •38) Поляризация света при отражении и преломлении на границе двух диэлектриков. Закон Брюстера.
- •39) Поляризацияя света при двойном лучепреломлении. Призма Николя. Вращение плоскости поляризации. Закон Био.
- •40) Тепловое излучение. Законы теплового излучения. Формула Планка.
- •41)Излучение солнца. Инфракрасное и ультрафиолетовое излучения и их применение в медицине.
- •42) Теплоотдача организма. Физические основы термографии.
- •43) Люминесценция, ее виды. Механизм и свойства люминесценции. Правило Стокса.
- •44) Применение люминофоров и люминесцентного анализа в медицине.
- •45) Вынужденное излучение. Инверсная заселенность уровней. Основные элементы лазера.
- •46) Устройство и принцип работы рубинового и гелий-неонового лазеров.
- •47) Свойства лазерного излучения. Применение лазерного излучения в медицине.
- •48) Рентгеновское излучение. Устройство рентгеновской трубки. Тормозное рентгеновское излучение. Характеристическое рентгеновское излучение. Закон Мозли.
- •49) Первичные процессы взаимодействия рентгеновского излучения с веществом: когерентное рассеяние, комптон-эффект, фотоэффект.
- •51) Явление радиоактивности. Виды радиоактивного распада. Основной закон радиоактивного распада.
- •52) Альфа-распад ядер и его способности. Бета-распад ядер, его виды, особенности и спектр. Гамма излучение ядер.
- •53) Взаимодействие ионизирующего излучения с веществом.
- •57) Дозиметрия ионизирующего излучения. Поглощенная и экспозиционная дозы. Мощность дозы.
- •58) Количественная оценка биологического действия ионизирующего излучения. Коэффициент качества излучения. Эквивалентная доза.
- •59) Первичное действие ионизирующих излучений на организм. Защита от ионизирующих излучений.
57) Дозиметрия ионизирующего излучения. Поглощенная и экспозиционная дозы. Мощность дозы.
Необходимость количественной оценки действия ионизирующего излучения на различные вещества живой и неживой природы привела к появлению дозиметрии.
Дозиметрия - раздел ядерной физики и измерительной техники, в котором изучают величины, характеризующие действие ионизирующего излучения на вещества, а также методы и приборы для их измерения.
Процессы взаимодействия излучения с тканями протекают поразному для различных типов излучений и зависят от вида ткани. Но во всех случаях происходит преобразование энергии излучения в другие виды энергии. В результате часть энергии излучения поглощается веществом.Поглощенная энергия - первопричина всех последующих процессов, которые в конечном итоге приводят к биологическим изменениям в живом организме. Количественно действие ионизирующего излучения (независимо от его природы) оценивается по энергии, переданной веществу. Для этого используется специальная величина - доза излучения (доза - порция).
Поглощенная доза
Поглощенная доза (D) - величина, равная отношению энергии ΔΕ, переданной элементу облучаемого вещества, к массе Δm этого элемента:
В СИ единицей
Экспозиционная доза
Поглощенная и связанная с ней эквивалентная дозы облучения характеризуют энергетическое действие радиоактивного излучения. В качестве характеристики ионизирующего действия излучения используют другую величину, называемую экспозиционной дозой.Экспозиционная доза является мерой ионизации воздуха рентгеновскими и γ-лучами.
Экспозиционная доза (Х) равна заряду всех положительных ионов, образующихся под действием излучения в единице массы воздуха при нормальных условиях.
Связь между поглощенной и экспозиционной дозами выражается соотношением
где f - некоторый переводной коэффициент, зависящий от облучаемого вещества и длины волны излучения. Кроме того, величина f зависит от используемых единиц доз
Мощность дозы
Мощность дозы (N) - величина, определяющая дозу, полученную объектом за единицу времени.
При равномерном действии излучения мощность дозы равна отношению дозы ко времени t, в течение которого действовало ионизирующее излучение:
Если источник излучения можно считать точечным, то мощностьэкспозиционной дозы прямо пропорциональна активности радионуклида (А) и обратно пропорциональна квадрату расстояния до точки облучения (r):
где κγ - гамма-постоянная, характерная для данного радиоактивного препарата.
58) Количественная оценка биологического действия ионизирующего излучения. Коэффициент качества излучения. Эквивалентная доза.
Эквивалентная доза
Величина поглощенной дозы учитывает только энергию, переданную облучаемому объекту, но не учитывает «качество излучения». Понятиекачества излучения характеризует способность данного вида излучения производить различные радиационные эффекты. Для оценки качества излучения вводят параметр - коэффициент качества (quality factor). Он является регламентированной величиной, его значения определены специальными комиссиями и включены в международные нормы, предназначенные для контроля над радиационной опасностью.
Коэффициент качества (К) показывает, во сколько раз биологическое действие данного вида излучения больше, чем действие фотонного излучения, при одинаковой поглощенной дозе.
Эквивалентная доза (Н) равна поглощенной дозе, умноженной на коэффициент качества для данного вида излучения:
В СИ единица эквивалентной дозы называется зивертом (Зв) - в честь шведского специалиста в области дозиметрии и радиационной безопасности Рольфа Максимилиана Зиверта. Наряду с зивертомиспользуется и внесистемная единица эквивалентной дозы - бэр(биологический эквивалент рентгена): 1 бэр = 10-2 Зв.
Если организм подвергается действию нескольких видов излучения, то их эквивалентные дозы (Нi) суммируются:
Биологическая доза ионизирующих излучений — количественная оценка излучения, учитывающая не только поглощенную энергию, но и биологическую эффективность данного вида излучения. Биологическая доза ионизирующих излучений измеряется в единицах бэр