
- •И. П. Аистов
- •Защита атмосферы
- •От промышленных выбросов
- •Учебное пособие
- •Введение
- •Глава 1. Классификация промышленных выбросов
- •1.1. Классификация выбросов по составу
- •1.2. Летучие промышленные выбросы
- •Глава 2. Характеристики и свойства аэрозолей
- •2.1. Морфология частиц (коэффициент формы)
- •Ориентировочные значения коэффициента формы частицы
- •2.2. Дисперсность аэрозолей
- •Пример фракционного состава пыли
- •2.3. Плотность частиц
- •2.4. Удельная поверхность частиц
- •2.5. Коагуляция аэрозолей
- •2.6. Адгезия и аутогезия
- •2.7. Электризация аэрозолей
- •2.8. Смачиваемость твердых частиц аэрозолей
- •2.9. Пожаро- и взрывоопасность аэрозолей
- •2.10. Вредное действие пыли на человека
- •2.11. Вредное действие пыли на оборудование
- •Глава 3. Параметры процесса очистки газа в газоочистительных аппаратах
- •3.1. Степень очистки газоочистительного аппарата
- •3.2. Фракционная степень очистки газоочистительного аппарата
- •3.3. Гидравлическое сопротивление пылеуловителей
- •Глава 4. Физические основы очистки газов
- •4.3. Достоинства и недостатки «мокрых» методов очистки газов
- •4.4. Основные механизмы осаждения частиц
- •4.5. Закон Стокса
- •4.6. Гравитационное осаждение частиц. Скорость витания частиц
- •4.7. Центробежное осаждение частиц
- •4.8. Инерционное осаждение частиц
- •А) сферическое или цилиндрическое препятствие б) плоское препятствие
- •4.9. Осаждение частиц при зацеплении
- •4.10. Поправка Кенингема-Милликена. Броуновское движение частиц
- •4.11. Осаждение частиц под действием электрического поля
- •4.12. Осаждение пылевых частиц на поверхности жидкости
- •4.13. Улавливание частиц при барботаже
- •4.14. Захват частиц каплями
- •Глава 5. Сухие механические пылеуловители
- •5.1. Пылеосадительная камера
- •5.2. Инерционные пылеуловители
- •5.3. Жалюзийные пылеуловители
- •5.4. Циклоны
- •5.4.1. Основные виды и конструкции циклонов
- •Циклоны типа цн
- •Групповой циклон из 6-ти элементов: 1 – коллектор грязного газа; 2 – камера чистого газа; 3 – бункер; 4 – люк; 5 – циклон левый; 6 – циклон правый Групповые циклоны
- •Батарейные циклоны
- •5.4.2. Принцип действия и устройство циклонов
- •5.4.3. Теоретические основы расчета циклонов
- •Глава 6. Мокрые пылеуловители
- •6.1. Абсорбция
- •6.2. Полые газопромыватели
- •6.3. Центробежный скруббер типа цвп
- •6.4. Форсуночный скруббер
- •6.5. Барботажно-пенные пылеуловители
- •6.6. Струйный пылеуловитель типа пвмс
- •6.7. Скруббер Вентури
- •6.8. Противопоточные насадочные башни
- •6.9. Определение эффективности очистки газов в мокрых пылеуловителях
- •6.9.1. Фракционный метод
- •6.9.2. Энергетический метод расчета эффективности улавливания пыли мокрыми пылеуловителями
- •Глава 7. Основные методы и аппараты очистки газовых выбросов от химических соединений и примесей
- •7.1. Адсорбция
- •7.2. Термическая нейтрализация
- •7.3. Биохимические методы
- •Библиографический список
- •Параметры β и χ для некоторых аэрозолей
- •Содержание
- •Глава 5. Сухие механические пылеуловители 50
- •Глава 6. Мокрые пылеуловители 63
- •Глава 7. Основные методы и аппараты очистки
- •7.1. Адсорбция 76
4.13. Улавливание частиц при барботаже
Барботажем называется движение газа(аэрозоля) через слой жидкости, которая принимает вид пузырьков (пены) или струй. Размер пузырей газа при барботаже колеблется в пределах от 2 до 20 мкм и зависит в основном от скорости газового потока, которую в барбатерах и пенных аппаратах принимают от 1 до 4…4,5 м/с. Важнейшим условием работоспособности пенного слоя является его стабильность. Разрушение пенного слоя может произойти в следующих случаях:
1) при падении скорости газа ниже некоторой критической скорости (для разных типов аппаратов они различны);
2) при возрастании скорости газа до значений, когда начинается захват газом и вынос из аппарата большого количества жидкости, что нарушает структуру пенного слоя;
3) при неравномерном размещении пены по сечению аппарата (из-за неравномерности поля скоростного газового потока; не горизонтальности пенообразующей решетки; по другим причинам).
Внутри газового пузыря действуют механизмы инерции, гравитации и диффузии. На действие этих механизмов накладывается влияние формы частиц, их гидрофильности или гидрофобности.
Степень улавливания за счет инерционного осаждения оценивается по формуле
,
где vпуз – скорость подъема газового пузыря;
dпуз – диаметр пузыря;
τр – время релаксации частицы, представляющей рассматриваемую фракцию.
Степень улавливания за счет гравитации:
Степень улавливания за счет диффузии:
Приведенные формулы ориентировочны, так как не учитывают коагуляциючастиц внутри пузыря, гидрофильность или гидрофобность частиц и др.:
ηΣ ≈ 1 – (1 – ηи) • (1 – ηгр) •(1 – ηд).
4.14. Захват частиц каплями
Захват частиц каплями основан на кинематической коагуляции, обусловленной разностью скоростей частиц и капель. Можно выделить три основных режима захвата.
1. Спокойный режим: аэрозольдвижется с малой скоростью (ламинарный поток) – в этом случае капли (частицы) падают под действием силы тяжести.
2. Средний (переходной) режим: аэрозольдвижется со скоростью, соответствующей ламинарному или слаботурбулированному потоку, – в этом случае капли имеют скорость, значительно превышающую скорость седиментации (т.е. скорости гравитационного осаждения).
3. Динамический режим: скорость потока аэрозоля сильно турбулизирована. В этом случае жидкость или ее капли поступают в поток и интенсивно диспергируются (дробятся) под влиянием турбулентных пульсаций, которые способствуют контакту между жидкостью и аэрозольнымичастицами.
В целях осаждения используют в основном динамический режим, который характеризуется высокой скоростью газового потока (vг = 50…150 м/с). Степень очистки (т. е. степень захвата частиц каплями) определяется двумя факторами: 1) скоростью газового потока; 2) удельным орошением жидкостью в аппарате.
При относительно небольшом удельном орошении (q = 0,1…1,0 л/м3) и значениях критерия Стокса (0,1 ≤ Stk ≤ 1,0) степень захвата каплями частиц может быть приближенно оценена:
(4.41)
Необходимо отметить, что формула (4.41) справедлива также для случая захвата частиц на «сухих» шарообразных препятствиях, основанных на эффектах зацепления (параграф 4.9).
При удельном орошении (q = 1,5…2,0 л/м3 и Stk = 1,0…170) используют следующую формулу оценки степени захвата:
Средний диаметр (размер) капель можно оценить по формуле:
где vжг – скорость потока относительно жидкости во входной горловине аппарата, м/с;
σж – поверхностное натяжение жидкости, Н/м.