Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
148
Добавлен:
13.03.2016
Размер:
107.52 Кб
Скачать

2.4. Носители информации. Передача сообщения

Сообщение – информативный поток, который в процессе передачи информации поступает к приемнику. 

  • информация передается посредством конкретного сообщения.

  • для одной и той же информации могут существовать различные сообщения.

Например:

it`s raining идет дождь

Информация всегда связана с материальным носителем.

Носи́тель информа́ции (информацио́нный носи́тель) — любой материальныйобъект или среда, используемый для хранения или передачиинформации.

Носителем информации может быть:

  • любой материальный предмет (бумага, камень и т.д.);

  • волны различной природы: акустическая (звук), электромагнитная (свет,радиоволна) и т.д.;

  • вещество в различном состоянии: концентрация молекул в жидком растворе, температура и т.д.

Машинные носители информации: перфокарты, перфоленты, дискеты, флешки и т.д.

Сигнал - способ передачи информации. Это физический процесс, имеющий информационное значение. Он может быть непрерывным или дискретным.

Сигнал называется дискретным, если он может принимать лишь конечное число значений в конечном числе моментов времени.

Аналоговый сигнал - сигнал, непрерывно изменяющийся по амплитуде и во времени.

Сигналы, несущие текстовую, символическую информацию, дискретны.

Аналоговые сигналы используют в телефонной связи, радиовещании, телевидении.

Примеры получения информации:

1) динамик компьютера издает специфический звук, хорошо знакомый Васе, — следовательно, пришло новое сообщение по ICQ;

2) с вертолета пожарной охраны в глубине леса замечен густой дым — обнаружен новый лесной пожар;

3) всевозможные датчики, расположенные в сейсмологически неустойчивом районе, фиксируют изменение обстановки, характерное для приближающегося землетрясения.

Для работы с аналоговыми сигналами цифровыми методами выполняют их дискретизацию.

Общая схема передачи сообщения

Источник сообщения - человек или физический, технический и т.д. процесс. Сообщение может быть закодировано (шифр, преобразование человеческой речи в радио-сигнал, электромагнитные колебания, оптические сигналы и т.д.).

  • От передатчика до приемника закодированный сигнал передается по каналу связи. В качестве носителя при передаче сообщения по каналу связи чаще всего используют:

      • механические движения (механика)

      • механическое давление жидкости или газа (гидравлика, пневматика)

      • волны давления в жидкостях, газах, твердом теле (акустика)

      • электрические токи и напряжения,

      • электромагнитные волны (радио, свет).

Пропускная способность канала – количество передаваемой по каналу информации, измеряется в бит/с.

2.6. Измерения информации

2.6.1. Подходы к измерению информации

В информатике используются различные подходы к измерению информации:

Алфавитный (кибернетический, объемный) подход к измерению информации не связывает кол-во информации с содержанием сообщения. Кол-во информации зависит от объема текста и мощности алфавита.

Алфавит – конечное множество различных знаков, символов, для которых определена операция конкатенации (приписывания, присоединения символа к символу или цепочке символов); с ее помощью по определенным правилам соединения символов и слов можно получать слова (цепочки знаков) и словосочетания (цепочки слов) в этом алфавите.

Конечная последовательность букв алфавита называется словом.

Длиной некоторого слова называется число составляющих его символов.

N при алфавитном подходе называют мощностью алфавита. Информационная ёмкость каждого знака зависит от количества знаков в алфавите. Следовательно, каждый из N символов несёт i бит информации.

2i = N

Остаётся подсчитать количество символов в тексте сообщения k.

Количество информации:

I = k × i

Алфавитный подход является объективным способом измерения информации и подходит для работы технических устройств.

Минимальная мощность алфавита, пригодного для передачи информации, равна 2. Такой алфавит называется двоичным алфавитом. Информационный вес символа в двоичном алфавите легко опре­делить. Поскольку 2i = 2, то i = 1 бит. Итак, один символ двоичного алфавита несет 1 бит информации.

Например, основная физическая единица длины — метр. Но существуют мил­лиметр, сантиметр, километр. Расстояния разного размера удобно выражать через разные единицы. Так же обстоит дело и с измере­нием информации.

1 бит — это исходная единица.

Следующая по величине единица — байт. Байт вводится как информационный вес символа из алфавита мощностью 256. Поскольку 256 = 28, то 1 байт = 8 бит.

Ограничений на max мощность алфавита нет, но есть достаточный алфавит мощностью 256 символов. Этот алфавит используется для представления текстов в компьютере. Поскольку 256=28, то 1 символ несет в тексте 8 бит информации.

Пример: слово «мир» несет 24 бит информации.

Содержательный (энтропийный, вероятностный) подход к измерению информации. Этот подход основан на том, что факт получения информации всегда связан с уменьшением неопределенности (энтропии) системы. Сообщение несет информацию для человека, если содержащиеся в нем сведения являются для него новыми и понятными.  Если сообщение не информативно, то количество информации с точки зрения человека = 0.

Пример: вузовский учебник по высшей математике содержит знания, но они не доступны 1-класснику.

Количество информации  - это мера уменьшения неопределенности. В качестве меры неопределенности вводится энтропия Н, а количество информации равно:

I = Hapr – Haps

где Hapr априорная энтропия о состоянии исследуемой системы или процесса;

Haps – апостериорная энтропия.

Апостериори (от лат. aposteriori – из последующего) – происходящее из опыта (испытания, измерения). Априори (от лат. apriori – из предшествующего) – понятие, характеризующее знание, предшествующее опыту (испытанию) и независимое от него.

В случае, когда в ходе испытания имевшаяся неопределенность снята (получен конкретный результат, то есть Haps = 0), количество полученной информации совпадает с первоначальной энтропией.

Так, американский инженер Р. Хартли (1928 г.) процесс получения информации рассматривает как выбор одного сообщения из конечного наперёд заданного множества из N равновероятных сообщений, а количество информации I, содержащееся в выбранном сообщении, определяет как двоичный логарифм N.

Формула Хартли: H= log2N.

Допустим, нужно угадать одно число из набора чисел от единицы до ста. По формуле Хартли можно вычислить, какое количество информации для этого требуется: I = log2100 » 6,644. То есть сообщение о верно угаданном числе содержит количество информации, приблизительно равное 6,644 единиц информации.

Приведем другие примеры равновероятных сообщений:

  1. при бросании монеты: "выпала решка", "выпал орел";

  2. на странице книги: "количество букв чётное", "количество букв нечётное".

Определим теперь, являются ли равновероятными сообщения "первой выйдет из дверей здания женщина" и "первым выйдет из дверей здания мужчина". Однозначно ответить на этот вопрос нельзя. Все зависит от того, о каком именно здании идет речь. Если это, например, станция метро, то вероятность выйти из дверей первым одинакова для мужчины и женщины, а если это военная казарма, то для мужчины эта вероятность значительно выше, чем для женщины.

Для задач такого рода американский учёный Клод Шеннон предложил в 1948 г. другую формулу определения количества информации, учитывающую возможную неодинаковую вероятность сообщений в наборе.

Формула Шеннона: I = – ( p1 log2 p1 + p2 log2 p2 + . . . + pN log2 pN ), где pi — вероятность того, что именно i-е сообщение выделено в наборе из N сообщений.

N – количество сообщений

Легко заметить, что если вероятности p1, ..., pN равны, то каждая из них равна 1/N, и формула Шеннона превращается в формулу Хартли.

Задача1: Какое количество информации будет содержать зрительное сообщение о цвете вынутого шарика, если в непрозрачном мешочке находится 50 белых, 25красных, 25 синих шариков

1) всего шаров 50+25+25=100

2) вероятности шаров 50/100=1/2, 25/100=1/4, 25/100=1/4

3)I= -(1/2 log21/2 + 1/4 log21/4 + 1/4 log21/4) = -(1/2(0-1) +1/4(0-2) +1/4(0-2)) = 1,5 бит

 

Количество информации достигает max значения, если события равновероятны, поэтому количество информации можно расcчитать  по формуле 

Задача2 : В корзине лежит 16 шаров разного цвета. Сколько информации несет сообщение, что достали белый шар?

т.к. N = 16 шаров,  то  I = log2 N = log2 16 = 4 бит.