Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Литература ЦОС / Статья Цифровые синтезаторы музыкальных звуков.docx
Скачиваний:
67
Добавлен:
11.03.2016
Размер:
92.3 Кб
Скачать

Синтез музыкальных звуков

Обобщенно технология создания музыкальных звуков в современных электромузыкальных цифровых синтезаторах выглядит так: с помощью цифрового устройства, использующего волновой табличный, частотно-модуляционный, физического моделирования, аддитивного гармонического синтеза и другие методы, генерируется так называемый сигнал возбуждения с заданной высотой звука. Он должен иметь спектральные характеристики, максимально похожие на характеристики имитируемого музыкального инструмента на стадии поддержки. Затем сигнал возбуждения подается на фильтры, имитирующие амплитудно-частотные характеристики излучающих звук поверхностей (корпус, дека и т. д.) реальных музыкальных инструментов, и управляемые сигналом амплитудной огибающей фильтры, создающие эффект большего количества высоких частот во время стадии атаки и последующего их уменьшения. Одновременно формируется амплитудная огибающая сигнала с помощью умножения временных отсчетов сигнала на временные отсчеты образцовой для данного типа реального музыкального инструмента амплитудной огибающей. Могут быть добавлены частотное и амплитудное вибрато.

Далее обычно сигнал обрабатывается электронными звуковыми эффектами реверберации и хоруса. Иногда используются дополнительные эффекты: флэнжер, pitch-shifter, speaker simulator, гармонайзер, подавитель шумов, эквалайзер и другие. Если синтезируется нескольких одновременно звучащих нот разных музыкальных инструментов, то большинство описанных операций в мощных цифровых устройствах выполняется для каждой ноты каждого инструмента отдельно. Результирующий сигнал получается суммированием в цифровом виде всех составляющих звуков и только после этого преобразуется из цифрового представления в аналоговое с помощью высококачественного ЦАП. Естественно, в конкретных реализациях цифровых синтезаторов музыкальных звуков некоторые этапы могут быть упрощенны или вовсе отсутствовать, что, конечно, не улучшает качество их звука. Обычно синтезаторы получают в среде музыкантов упрощенное название по типу примененного в них генератора возбуждающей функции. Например, если применяется волновой табличный генератор, то и все устройство целиком может быть названо "wavetable synthesizer" - синтезатор с вэйвтейблом, или табличный синтезатор.

Табличные синтезаторы

Самые распространенные и популярные современные синтезаторы музыкальных звуков используют различные модификации метода волнового табличного синтеза. Идея этого метода проста. Запишем в оперативную (ОЗУ) или постоянную (ПЗУ) память синтезатора оцифрованный звук какого-нибудь музыкального инструмента. В нужный момент времени будем просто считывать из памяти и выводить оцифрованный сигнал на цифро-аналоговый преобразователь. На первый взгляд - все просто. Но что делать с высотой или тональностью полученного звука? Ведь воспроизведется именно та нота, которая была сыграна в момент оцифровки звука музыкального инструмента, а синтезатор должен воспроизводить любую ноту с тембром образцового музыкального инструмента, оцифрованный звук которого хранится в памяти.

Допустим, исходный сигнал дискретизирован с частотой 44,1 кГц. Теперь, если мы будем воспроизводить его на удвоенной частоте дискретизации 88,2 кГц, то есть вдвое быстрее, высота звука возрастет на октаву. Если же воспроизводить сигнал на пониженной частоте дискретизации, то высота звука соответственно уменьшится. Таким образом, если воспроизводить сигнал на измененной соответствующим образом частоте дискретизации, можно получить звук любой высоты. Однако у такого метода есть недостатки. Во-первых, сделать высокостабильный плавно перестраиваемый генератор частоты дискретизации во много раз труднее, чем стандартный стабилизированный кварцем генератор. Кроме того, число таких устройств должно быть равно числу одновременно воспроизводимых нот разных музыкальных инструментов.

Есть и другой неприятный момент. Одновременно со смещением величины тактовой частоты и высоты звука будет изменяться длительность атаки и скорость затухания сигнала. Так, если мы удвоим тактовую частоту, то наряду с удвоением высоты звука в два раза уменьшится общее время звучания сигнала (так как он будет проигрываться в два раза быстрее). Отсюда вдвое сократится длительность атаки, и вдвое возрастет скорость затухания звука. Это вызовет искажение общего впечатления о звуке. Тембр воспроизводимого сигнала заденут и более серьезные изменения (смещение формант).

В реальном музыкальном инструменте при изменении высоты звука форма амплитудно-частотной характеристики (АЧХ) излучающих звук поверхностей, местоположение на оси частот, величина ее максимумов и провалов механических и акустических резонансов обычно не изменяются. А вот при изменении скорости воспроизведения оцифрованного сигнала вместе с частотой основного тона изменится и форма АЧХ (растянется или сожмется, максимумы и минимумы сместятся по оси частот). Конечно, это сильно исказит звук. Кроме того, в некоторых музыкальных инструментах (пианино, гитара и т. д.) звуки разной частоты формируются с помощью различающихся механически элементов конструкции (струны с оплеткой и без; несколько струн, настроенные в унисон). В этом случае звук, полученный с помощью удвоения скорости воспроизведения оцифрованного сигнала, может изначально не соответствовать реальному на октаву более высокому звуку. Поэтому в табличных синтезаторах применяется несколько другой способ изменения высоты звука. Оцифровывается несколько разных по высоте сигналов реального музыкального инструмента, перекрывающих весь его частотный диапазон. Шаг по частоте должен быть достаточно мал, чтобы изменения тембра, связанные с конструктивными особенностями инструмента, при смещении частоты основного тона с помощью варьирования частоты дискретизации не были заметны на слух.

Эксперименты показывают, что некоторые эксперты замечают изменения тембра при шаге в один тон. Однако в недорогих устройствах считается достаточной оцифровка через пол-октавы. При генерации звука определенной высоты табличный синтезатор определяет, в каком частотном диапазоне находится звук, и использует соответствующие отсчеты из своей таблицы, корректируя их частоту основного тона точно до требуемой высоты, виртуально подстраиваячастоту дискретизации (ЧД). Под виртуальностью подразумевается следующее. ЧД выходного сигнала жестко стабилизирована кварцевым генератором (например, 44,1 кГц). Звук музыкального инструмента также дискретизирован на частоте 44,1 кГц. Для изменения высоты сигнала надо выбирать отсчеты сигнала из таблицы с частотой, немного отличной от 44,1 кГц, а подавать на ЦАП с частотой, точно равной 44,1 кГц. Это полностью аналогично(виртуальному) изменению частоты дискретизации данных в таблице и естественно будет восприниматься слухом как изменение высоты основного тона сигнала, что нам и требовалось.

Рис.3. Интерполяция сигнала в табличном синтезаторе AWE64 Gold.

На рис. 3 показано, как происходит выборка отсчетов оцифрованного на частоте 44,1 кГц сигнала с немного большей виртуальной частотой. Период выборки в этом случае будет немного меньше, чем период дискретизации исходного сигнала, поэтому в таблице не окажется всех отсчетов сигнала, точно соответствующих требуемым временам выборки. В этом случае в табличных синтезаторах, например, в AWE64 Gold, величины нужных дискретов вычисляются с помощью нелинейной интерполяции. (На упаковочной коробке AWE64 Gold соответствующая надпись и рисунки поясняют применение нелинейной интерполяции в табличном синтезаторе этой звуковой карты. Написано даже, что Creative Labs запатентовала такой метод. Но это же полный абсурд! Как можно запатентовать общеизвестные вещи?! Тогда и умножение, сложение, вычитание и деление надо патентовать!)

Важным конструктивным параметром цифрового синтезатора является объем необходимой памяти, отводимой под таблицы с оцифрованными звуками музыкальных инструментов. Для гипотетического устройства, имеющего диапазоном частот генерируемого звука в пять октав, при оцифровке через интервал в один тон по высоте с частотой дискретизации 48 кГц и разрядностью данных 24 бита 1-секундных отрезков сигнала реального музыкального инструмента понадобится около 7 Мбайт. Однако табличные синтезаторы обычных звуковых карт даже с меньшими объемами памяти (но не всегда с лучшим качеством) могут имитировать более ста инструментов. Достигается это несколькими методами. Звук оцифровывается с большим шагом по частоте основного тона и подвергается различным видам компрессии. В таблице хранятся отрезки сигнала значительно меньшей по времени длины, чем одна секунда. При этом для синтеза длительных нот применяется зацикливание, многократное повторное воспроизведение отрезка сигнала в таблице. Отрезок как бы превращается в кольцо. Естественно, для гладкого, без щелчков на стыке кольца требуется специальная обработка отрезка сигнала. Он должен содержать целое число периодов основного тона, а отсчеты около стыка должны быть обработаны специальной сглаживающей программой. Надо заметить, что если зацикленный отрезок сигнала слишком короток, то при синтезе длинной ноты наблюдается эффект "умирания" звука, быстро, до окончания звучания ноты, превращающегося в раздражающее жужжание с явно выраженным "компьютерным" привкусом. Обычно эффект начинает проявляться после 7-15 повторных воспроизведений отрезка сигнала.

Не совсем ясно, как поступать с оцифровкой стадии атаки звука реального музыкального инструмента, играющей очень важную роль в формировании ощущения тембра инструмента и его узнавания. Очевидно, стадия атаки не может быть в коротком зацикленном отрезке сигнала. В противном случае при генерации длительной ноты вы услышите многократные повторные всплески громкости сигнала. Это будет звучать довольно странно и неестественно. Видимо, далеко не все фирмы производители электромузыкальных цифровых синтезаторов справились с этой проблемой. Во всяком случае, у многих, даже недешевых устройств, стадия атаки некоторых имитируемых ими инструментов звучит, мягко выражаясь, не вполне естественно. Особенно это заметно при попытках имитации звука инструментов с атакой, контролируемой музыкантами с целью придания звуку большей выразительности.

В наиболее совершенных синтезаторах для изменения (увеличения) длительности звучания короткого отрезка оцифрованного сигнала в таблице и смещения частоты его основного тона применяются патентованные алгоритмы наподобие имеющихся в программе WaveLab эффектов pitch-shifter и time-stretch. Pitch-shifter позволяет сдвигать частоту основного тона "зашитого" в таблицу оцифрованного образцового звука реального музыкального инструмента без изменения его длительности и других временных параметров. Таким образом, теоретически можно хранить в таблице сигнал полностью, с атакой, поддержкой и затуханием, а при воспроизведении, сохраняя естественные натурально звучащие динамические параметры (атака, поддержка, затухание) и используя "секретные" алгоритмы pitch-shifter, генерировать звук любой ноты. Time-stretch позволяет увеличивать длительность звучания стадии поддержки до необходимой величины без изменения частоты основного тона, что в сочетании с pitch-shifter позволяет создавать экономичные в смысле требуемого объема памяти цифровые музыкальные синтезаторы.