Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

МММ_Лаб_#1 / Diffusion_Ch7

.pdf
Скачиваний:
15
Добавлен:
11.03.2016
Размер:
250.93 Кб
Скачать

Diffusion - Chapter 7

D. Interfacial Dopant Pile-up

• Dopants may also segregate to an interface layer, perhaps only a monolayer thick. Interfacial dopant dose loss or pile-up may consume up to 50% of the dose in a shallow layer.

Oxide

 

 

1021

 

Dose = 1 x 1015 cm-2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dose lost in interfacial layer

)

20

 

 

Dose = 6.8 x 1014 cm-2

 

 

3

10

 

 

 

 

 

-

 

 

 

 

 

 

 

 

 

( cm

 

 

 

 

 

 

 

 

 

Concentration

1019

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Normal

 

 

1018

 

 

 

 

 

 

Arsenic

 

 

30sec, 1050˚C RTA

 

 

 

segregation

 

 

 

 

 

 

 

 

 

As implanted

 

 

 

 

 

 

1017

 

 

 

 

 

 

 

 

 

0

20

40

60

80

100

120

 

 

 

 

 

 

Depth (nm)

 

 

 

• In the experiment (right) 40% of the dose was lost in a 30 sec anneal.

Summary of Macroscopic Approach to Diffusion

Fick's first law correctly describes dopant diffusion in the limit of low concentrations.

"Fixes" to this law to account for experimental observations (concentration dependent diffusion

and ε-field effects), are useful, but at this point

the complexity of the "fixes" begins to outweigh their usefulness.

We turn to an atomistic view of diffusion for a deeper understanding.

SILICON VLSI TECHNOLOGY

2 1

© 2000

by Prentice Hall

Fundamentals,

Practice

and Modeling

 

Upper

Saddle River, NJ.

By Plummer,

Deal and

Griffin

 

 

 

Diffusion - Chapter 7

Atomic Scale Diffusion

Many effects (OED, TED etc) that are very important experimentally, cannot be explained by the macroscopic models discussed so far.

Thus we need to look deeper at atomic scale effects.

Vacancy Assisted Mechanism: A + V AV

Kick-out and Interstitial(cy) Assisted Mechanisms (Identical from a mathematical viewpoint.)

A + I AI

SILICON VLSI TECHNOLOGY

2 2

© 2000

by Prentice Hall

Fundamentals,

Practice

and Modeling

 

Upper

Saddle River, NJ.

By Plummer,

Deal and

Griffin

 

 

 

 

 

 

Diffusion - Chapter 7

 

A. Inferences About Mechanisms

 

 

 

O2

 

Surface

 

 

 

Recombination

G

R

 

 

 

Bulk

*

I

 

 

 

Recombination

 

 

 

 

Inert

Buried Dopant Marker Layer

OED

Diffusion

 

 

Stacking Faults Grow

Oxidation provides an I injection source.

Nitridation provides a V injection source.

Stacking faults serve as "detectors" as do dopant which diffuse.

B. Modeling I And V Components Of Diffusion

• Experiments like those above and the As/Sb experiment below have "proven" that both point defects are important in silicon. Therefore,

D

 

= D* æf

CI

+ f

 

CV

ö

(22)

A

*

V *

÷

 

A ç

I

 

 

 

 

è

 

CI

 

 

CV

ø

 

SILICON VLSI TECHNOLOGY

2 3

© 2000

by Prentice Hall

Fundamentals,

Practice

and Modeling

 

Upper

Saddle River, NJ.

By Plummer,

Deal and

Griffin

 

 

 

 

 

 

 

 

Diffusion

-

Chapter

7

 

1020

 

 

 

 

 

 

 

 

)

19

 

 

 

As (inert)

 

 

 

 

3

10

 

 

 

 

 

 

 

-

 

 

 

 

 

 

 

 

 

(cm

 

As (O2)

 

 

Sb (inert)

 

 

 

 

Concentration

 

 

 

 

 

 

 

 

1018

 

 

 

 

 

 

 

 

1017

 

 

 

 

 

 

 

 

 

 

 

 

 

Sb (O2)

 

 

 

 

 

1016

 

 

 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

 

 

 

Depth (µm)

Thus dopant diffusion can be enhanced or retarded by changes in the point defect concentrations.

Oxidation injects interstitials, raises CI / C*I and

reduces CV / C*V through I-V recombination in the bulk silicon. Nitridation does exactly the opposite.

• Measurements on the extent of enhanced or retarded diffusion of a dopant under oxidizing or nitriding conditions allow an estimate of the I or V component of diffusion to be made.

 

 

 

fI

fV

 

 

Silicon

 

0 . 6

0 . 4

 

 

Boron

 

1 . 0

0

 

 

Phosphorus

 

1 . 0

0

 

 

Arsenic

 

0 . 4

0 . 6

 

 

Antimony

 

0 . 0 2

0 . 9 8

 

SILICON VLSI TECHNOLOGY

2 4

© 2000 by Prentice Hall

Fundamentals, Practice and Modeling

 

Upper Saddle River, NJ.

By Plummer, Deal and Griffin

 

 

 

Diffusion - Chapter 7

C. Modeling Atomic Scale Reactions

• Consider the simple chemical reaction

A +I ¬¾®AI

(23)

This contains a surprising amount of physics.

For example OED is explained because oxidation injects I driving the equation to the right, creating more AI pairs and enhancing the dopant D.

In the more complex example below, phosphorus diffuses with I, and releases them in the bulk. This enhances the tail region D.

 

21

 

 

 

 

 

104

 

 

10

Phosphorus

 

 

 

 

Ratio Supersaturation Interstitial

 

 

 

 

 

 

 

1020

 

 

 

 

 

1000

)

 

 

 

 

 

 

 

-3

 

 

 

 

 

 

 

Concentration (cm

1019

 

 

 

C

/C *

100

 

 

 

 

I

I

 

1018

 

FI

 

FAI

 

10

1017

 

 

 

 

 

CI/CI* = 1

 

 

 

1

 

 

 

 

 

 

 

 

1016

 

 

 

 

 

0.1

 

 

0

0.2

0.4

0.6

0.8

1

 

Depth (µm)

SILICON VLSI TECHNOLOGY

2 5

© 2000

by Prentice Hall

Fundamentals,

Practice

and Modeling

 

Upper

Saddle River, NJ.

By Plummer,

Deal and

Griffin

 

 

 

Diffusion - Chapter 7

• "Emitter push" is also explained by this mechanism.

Emitter

Base

Emitter

push

Collector

• If we assume “chemical equilibrium” between dopants and defects in Eqn. (23), then from the law of mass action,

 

 

CAI = kCACI

 

 

(24)

• Applying Fick’s law to the mobile

species

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CAI

 

 

 

 

 

FAI = -dAI x

 

 

(25)

• Applying the chain rule from calculus

 

 

F

= -d

ækC

I

CA + kC

CI ö

(26)

AI

 

AI è

x

A

x ø

 

 

• Thus, gradients in defects as well as gradients in dopant concentrations can drive diffusion fluxes.

SILICON VLSI TECHNOLOGY

2 6

© 2000

by Prentice Hall

Fundamentals,

Practice

and Modeling

 

Upper

Saddle River, NJ.

By Plummer,

Deal and

Griffin

 

 

 

Diffusion - Chapter 7

• The overall flux equation solved by simulators like SUPREM (see text for derivation) is

FBItot = D*BI

(written positive

æ

1

+ b

p ö

 

CIo

 

æ

CIo p

ö

ç

ni

÷

 

 

×ç

 

 

 

 

 

÷

×

 

×CB

 

lnçCB

 

 

 

÷ (27)

 

 

1 + b

 

*

 

*

 

 

ç

 

 

÷

 

CIo

 

x è

CIo

 

ni ø

è

 

 

 

 

ø

 

 

 

 

 

 

 

 

 

for boron diffusing with neutral and interstitials as an example).

• Thus there are several distinct effects that drive the dopant diffusion:

• inert, low concentration diffusion, driven by the dopant gradient (D*BI )

C o

• the interstitial supersaturation ( I )

C*Io

• high concentration effects on the dopant

æ

 

p ö

 

 

 

 

 

diffusivity ç1

+ b

 

÷ /(1

+ b)

 

è

 

ni ø

 

 

p

 

• the electric field

effect

(

ln

)

 

 

 

 

 

 

 

x ni

• Together, these provide a very powerful modeling capability in modern simulation tools.

SILICON VLSI TECHNOLOGY

2 7

© 2000

by Prentice Hall

Fundamentals,

Practice

and Modeling

 

Upper

Saddle River, NJ.

By Plummer,

Deal and

Griffin

 

 

 

Diffusion - Chapter 7

 

0.2

 

 

 

 

 

Microns

0

 

 

 

 

 

 

 

 

 

 

 

-0.2

 

 

 

 

 

 

-0.4

-0.2

 

0

0.2

0.4

 

 

 

 

Microns

 

 

 

1018

 

 

 

 

 

 

0.18 micron

 

 

 

 

 

)

 

 

 

 

 

 

-3

 

 

 

 

 

 

(cm

0.25 micron

 

 

 

Concentration

 

 

 

1.0 micron

 

 

 

 

 

 

 

 

 

 

 

1017

 

 

 

 

 

 

0

0.05

0.1

0.15

0.2

0.25

Depth (microns)

2D SUPREM simulation of small MOS transistor.

Ion implantation in the S/D regions generates excess I. These diffuse into the channel region pushing boron (channel dopant) up towards the surface.

Effect is more pronounced in smaller devices.

Result is that VTH depends on channel length (the "reverse short channel effect" only recently understood).

SILICON VLSI TECHNOLOGY

2 8

© 2000

by Prentice Hall

Fundamentals,

Practice

and Modeling

 

Upper

Saddle River, NJ.

By Plummer,

Deal and

Griffin

 

 

 

Diffusion - Chapter 7

Summary of Key Ideas

Selective doping is a key process in fabricating semiconductor devices.

Doping atoms generally must sit on substitutional sites to be electrically active.

Both doping concentration and profile shape are critical in device electrical characteristics.

Ion implantation is the dominant process used to introduce dopant atoms. This creates damage and thermal annealing is required to repair this damage.

During this anneal dopants can diffuse much faster than normal (Chapter 8 - TED).

Atomistic diffusion processes occur by pairing between dopant atoms and point defects.

In general diffusivities are proportional to the local point defect concentration.

Point defect concentrations depend exponentially on temperature, and on Fermi level, ion implant damage, and surface processes like oxidation.

As a result dopant diffusivities depend on time and spatial position during a high temperature step.

Powerful simulation tools exist today which model these processes and which can predict complex doping profiles.

SILICON VLSI TECHNOLOGY

2 9

© 2000

by Prentice Hall

Fundamentals,

Practice

and Modeling

 

Upper

Saddle River, NJ.

By Plummer,

Deal and

Griffin

 

 

 

Соседние файлы в папке МММ_Лаб_#1