Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

МММ_Лаб_#1 / Diffusion_Ch7

.pdf
Скачиваний:
15
Добавлен:
11.03.2016
Размер:
250.93 Кб
Скачать

Diffusion - Chapter 7

DIFFUSION - Chapter 7

Basic Concepts

VG

Silicide Sidewall

Spacers

VS

Rpoly

VD

xW

Rcontact

Rsource Rext Rchan

xJ

Placement of doped regions (main source/drain, S/D extensions, threshold adjust) determine many short-channel characteristics of a MOS device.

Resistance impacts drive current.

As device shrinks by a factor K, junction depths should also scale by K to maintain same ε-field

patterns (assuming the voltage supply also scales down by the same factor).

• Gate doping affects poly-depletion and limits how the gate voltage controls the channel potential.

a)

b)

xj

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R = ρ

 

 

 

 

 

ρS = ρ/xj

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SILICON VLSI TECHNOLOGY

1

© 2000

by Prentice Hall

Fundamentals,

Practice

and Modeling

 

 

 

Upper

Saddle River, NJ.

By Plummer,

Deal and

Griffin

 

 

 

 

 

 

 

 

 

Diffusion - Chapter 7

• The resistivity of a cube is given by

J = nqv = nqmε =

1

 

ε

\ r = ε Wcm (1)

r

 

 

J

• The sheet resistance of a shallow junction is

 

 

R =

 

r

W / Square º r

(2)

 

 

 

 

 

 

 

 

 

 

 

S

 

 

 

 

 

 

x j

 

• For a non-uniformly doped layer,

 

rs =

r

=

 

 

1

(3)

x j

 

x j

 

 

 

 

q

ò[n(x) - NB ] m[n(x)] dx

 

 

 

 

 

 

 

 

 

0

 

 

 

 

Eqn. (3) has been numerically integrated by Irvin for simple analytical profiles (example later).

Sheet resistance can be experimentally measured by a four point probe technique.

 

Year of 1st DRAM

1 9 9 7

1 9 9 9

2 0 0 3

2 0 0 6

2 0 0

9

2 0 1 2

 

 

Shipment

 

 

 

 

 

 

 

 

 

 

 

 

 

Min Feature Size (nm)

2 5 0

1 8 0

1 3 0

1 0 0

7 0

 

5 0

 

 

DRAM Bits/Chip

256M

1 G

4 G

1 6 G

6 4 G

2 5 6 G

 

 

Minimum

Supply

1 . 8 -

1 . 5 -

1 . 2 -

0 . 9 -

0 . 6

-

0 . 5 - 0 . 6

 

 

Voltage

(volts)

2 . 5

1

. 8

1

. 5

1

. 2

0 . 9

 

 

 

Gate Oxide Tox

4 - 5

3

- 4

2

- 3

1 . 5 - 2

< 1 .

5

< 1 . 0

 

 

Equivalent (nm)

 

 

 

 

 

 

 

 

 

 

 

 

Sidewall

Spacer

1 0 0 -

7

2 -

5

2 -

2 0

- 4 0

7 . 5

-

5 - 1 0

 

 

Thickness

xW (nm)

2 0 0

1 4 4

1 0 4

 

 

1 5

 

 

 

 

Contact xj (nm)

1 0 0 -

7

0 -

5

0 -

4 0

- 8 0

1 5 - 3 0

1 0 - 2 0

 

 

 

 

 

 

2 0 0

1 4 0

1 0 0

 

 

 

 

 

 

 

xj at Channel (nm)

5 0 -

3 6

- 7 2

2 6

- 5 2

2 0

- 4 0

1 5 - 3 0

1 0 - 2 0

 

 

 

 

 

 

1 0 0

 

 

 

 

 

 

 

 

 

 

 

Drain Ext Conc (cm-3)

1x101 8

1x101 9

1x101 9

1x102 0

1x102 0

1x102 0

 

SILICON VLSI TECHNOLOGY

2

 

 

 

 

© 2000 by Prentice Hall

Fundamentals,

Practice

and Modeling

 

 

 

 

 

 

Upper

Saddle River, NJ.

By Plummer,

Deal and

Griffin

 

 

 

 

 

 

 

 

 

 

 

Diffusion - Chapter 7

Diffusion is the redistribution of atoms from regions of high concentration of mobile species to regions of low concentration. It occurs at all temperatures, but the diffusivity has an exponential dependence on T.

Predeposition: doping often proceeds by an initial predep step to introduce the required dose of dopant into the substrate.

Drive-In: a subsequent drive-in anneal then redistributes the dopant giving the required junction depth and surface concentration.

"Predep"

 

Drive-in

controlled dose

 

Silicon

constant dose

 

 

 

 

 

Ion Implantation and

Solid/Gas Phase Diffusion

 

 

 

 

Annealing

 

 

 

Advantages

 

Room temperature mask

No damage created by doping

 

 

 

Precise dose control

 

Batch fabrication

 

 

 

1011 - 1016 atoms cm-2 doses

 

 

 

 

Accurate depth control

 

 

Problems

 

 

 

 

 

Implant damage enhances

Usually limited to solid

 

 

diffusion

 

solubility

 

 

 

Dislocations caused

by

Low surface concentration

 

 

 

damage may cause junction

hard to achieve without a

 

 

 

leakage

 

long drive-in

 

 

 

Implant channeling may

Low dose predeps very

 

 

 

affect

profile

 

difficult

 

SILICON VLSI TECHNOLOGY

3

© 2000 by Prentice Hall

Fundamentals,

Practice

and Modeling

 

Upper Saddle River, NJ.

By Plummer,

Deal and

Griffin

 

 

 

Diffusion - Chapter 7

• Dopants are soluble in maximum value before another phase.

bulk silicon up to a they precipitate into

 

1022

 

 

 

 

 

)

 

 

 

 

As

 

3

 

 

 

 

 

-

 

 

P

 

 

 

cm

 

 

 

 

 

1021

 

 

 

 

 

(atoms

 

 

 

 

 

 

 

 

B

 

 

Solubility

1020

 

Sb

 

 

 

Sn

 

 

 

 

 

 

 

 

 

Solid

 

Ga

 

 

 

 

 

Al

 

 

 

 

 

1019

 

 

 

 

 

 

 

 

1200

1300

 

800

900

1000

1100

Temperature (˚C)

• Dopants may have an “electrical” solubility that is different than the solid solubility defined above.

Si

As

As+

V

• As4V is one possible electrically inactive form.

SILICON VLSI TECHNOLOGY

4

© 2000

by Prentice Hall

Fundamentals,

Practice

and Modeling

 

Upper

Saddle River, NJ.

By Plummer,

Deal and

Griffin

 

 

 

Diffusion - Chapter 7

• Macroscopic dopant redistribution is described by Fick’s first law, which describes how the flux (or flow) of dopant depends on the doping gradient.

Concentration

F = −D

∂C

(4)

 

∂x

 

F = - D dC/dx

t1 t2

Distance

This is similar to other laws where cause is proportional to effect (Fourier’s law of heat flow, Ohm’s law for current flow).

Proportionality constant is the diffusivity D in cm2 sec-1. D is related to atomic hops over an energy barrier (formation and migration of mobile species) and is exponentially activated. D is isotropic in the silicon lattice.

Negative sign indicates that the flow is down the concentration gradient.

SILICON VLSI TECHNOLOGY

5

© 2000

by Prentice Hall

Fundamentals,

Practice

and Modeling

 

Upper

Saddle River, NJ.

By Plummer,

Deal and

Griffin

 

 

 

Diffusion - Chapter 7

• Fick’s second law describes how the change in concentration in a volume element is determined by the change in fluxes in and out of the volume.

Fin Fout

C

 

 

x

 

 

 

 

 

 

• Mathematically

 

 

 

 

 

 

 

 

C

=

F

=

¶ æ

D

Cö

(5)

 

 

 

 

 

t

x

x è

x ø

 

 

 

 

• If D is a constant this gives

C

= D

2C

(6)

t

2

 

 

 

x

 

This is the only form of Fick's second law which can be solved analytically. We will consider a number of closed form solutions.

Modern silicon processing rarely satisfies the restrictive conditions for these solutions to apply (e.g. D = constant), so these solutions are only rough guidelines to real profiles.

SILICON VLSI TECHNOLOGY

6

© 2000

by Prentice Hall

Fundamentals,

Practice

and Modeling

 

Upper

Saddle River, NJ.

By Plummer,

Deal and

Griffin

 

 

 

Diffusion - Chapter 7

Solutions Of Fick’s Laws

1. Limited Source: Consider a fixed dose Q, introduced as a delta function at the origin.

Dose Q

Diffused Gaussian

x 0

• The solution that satisfies Fick’s second law is

C(x, t) =

 

Q

æ

-

x2 ö

 

 

 

expç

 

÷

(7)

 

pDt

 

2

è

 

4Dtø

 

Important consequences:

1.Dose Q remains constant

2.Peak concentration decreases as 1 / t

3.Diffusion distance from origin increases as

 

 

 

2

Dt

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

1

 

 

 

t=t

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

0.8

 

t=4*t

0

 

 

 

 

 

 

0.1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t=9*t

0

 

 

 

 

 

 

 

Concentration

 

 

 

 

 

 

 

 

 

 

0.6

 

 

 

 

 

 

 

 

 

0.01

0.4

 

 

 

 

 

 

 

 

 

0.001

 

 

 

 

 

 

 

 

 

 

 

 

0.2

 

 

 

 

 

 

 

 

 

0.0001

 

0

 

 

 

 

 

 

 

 

 

10 - 5

 

-5

-4

-3 -2

-1

0

1

2

3

4

5

 

 

 

X (Units of Diffusion Distance 2√Dt0)

 

 

 

 

 

t=t

 

 

 

 

 

0

 

 

 

 

 

t=4*t

0

 

 

 

 

 

 

 

 

 

t=9*t

0

 

 

 

 

 

 

-5

-3

-1

1

3

5

 

X (Units of Diffusion Distance 2√Dt0)

 

SILICON VLSI TECHNOLOGY

7

© 2000

by Prentice Hall

Fundamentals,

Practice

and Modeling

 

Upper

Saddle River, NJ.

By Plummer,

Deal and

Griffin

 

 

 

 

 

 

 

Diffusion - Chapter 7

2. Constant Source Near A Surface:

Imaginary

 

 

 

Delta Function

Delta Function

 

 

 

Dose Q

 

 

 

Dose Q

 

 

 

(Initial Profile)

Virtual

 

 

 

Diffused

Diffusion

 

 

 

Gaussian

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q

æ

 

x2 ö

æ

 

 

x2 ö

C(x, t) =

 

 

expç

-

 

÷

= C(0, t)expç

-

 

÷ (8)

 

pDt

 

 

 

 

è

 

4Dtø

è

 

 

4Dtø

3. Infinite Source: The infinite source is made up of small slices each diffusing as a Gaussian.

Dose C x

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Initial

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Profile

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Diffused

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Profile

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

(x - xi )

2

 

 

 

 

 

C(x, t) =

 

 

 

 

C

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

å Dxi exp-

4Dt

 

 

(9)

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pDt i=1

 

 

 

 

 

 

 

• The solution which satisfies Fick’s second law is

C(x, t) =

C'

é1 - erfæ

 

 

x

ö ù

= C

éerfcæ

x

 

ö ù

(10)

 

 

 

 

 

 

 

ê

 

 

è

 

 

ú

 

 

S ê

 

è 2 Dt

ú

 

 

2 ë

 

 

2 Dt ø û

 

 

ë

 

ø û

 

SILICON VLSI TECHNOLOGY

 

 

8

 

 

 

 

 

© 2000 by Prentice Hall

Fundamentals,

Practice and Modeling

 

 

 

 

 

 

 

 

 

Upper

Saddle River, NJ.

By Plummer,

Deal and Griffin

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Diffusion - Chapter 7

Important consequences of error function solution:

Symmetry about mid-point allows solution for constant surface concentration to be derived.

Error function solution is made up of a sum of Gaussian delta function solutions.

Dose beyond x = 0 continues to increase with annealing time.

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t=9*t

 

 

0.8

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

t=4*t

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

Initial

 

 

0.6

 

 

 

 

 

 

 

t=t

0

 

√Dt)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

erf(x/2

0.4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.2

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

-5

-4

-3

-2 -1

0

1

2

3

4

5

 

 

 

 

X (Units of 2√Dt

0

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(See Appendix A.9 in text for properties of erfc.)

4. Constant Surface Concentration: (just the right hand side of the above figure).

 

 

 

 

C(x, t) = C

éerfc

 

 

x

ù

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S ê

 

2

ú

 

 

 

 

 

 

 

 

ë

 

 

Dt û

• Note that the dose is given by

 

 

 

Q =

é1 - erfæ

 

x

 

ö

ù

=

2CS

 

 

ò

C

 

 

 

 

 

 

 

 

 

S ê

è 2

Dt ø

ú

 

 

 

p

 

0

 

ë

û

 

 

 

SILICON VLSI TECHNOLOGY

 

9

 

 

 

 

 

 

 

 

Fundamentals, Practice

and

Modeling

 

 

 

 

 

 

 

 

 

 

By Plummer, Deal

and Griffin

 

 

 

 

 

 

 

 

 

 

(11)

Dt (12)

© 2000 by Prentice Hall Upper Saddle River, NJ.

Diffusion - Chapter 7

Intrinsic Dopant Diffusion Coefficients

• Intrinsic dopant diffusion coefficients are found to be of the form:

 

 

 

D = D

0

æ

-EA ö

 

(13)

 

 

 

exp

è

kT ø

 

 

 

 

 

 

 

 

 

 

S i

B

In

 

A s

 

Sb

P

Units

D0

560

1 . 0

1 . 2

 

9 . 1 7

 

4 . 5 8

4 . 7 0

cm2 sec-1

EA

4 . 7 6

3 . 5

3 . 5

 

3 . 9 9

3 . 8 8

3 . 6 8

e V

• Note that ni is very large at process temperatures, so "intrinsic" actually applies under many conditions.

 

 

 

 

T

(˚C)

 

 

 

 

1200

1100

1000

9 0 0

 

8 0 0

 

 

1 0- 1 1

 

 

 

 

 

 

 

- 1 )

1 0- 1 3

 

 

 

 

 

 

 

sec

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

(cm

1 0- 1 5

 

 

 

 

In

 

 

Diffusivity

 

 

 

 

 

 

 

 

 

 

P

 

B

 

 

 

 

 

 

 

 

1 0- 1 7

 

 

 

 

 

Sb

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A s

 

 

1 0- 1 9

 

 

 

 

 

 

 

 

0 . 6 5

0 . 7

0 . 7 5 0 . 8 0 . 8 5

0 . 9

0 . 9 5

1

 

 

 

 

1000/T

(Kelvin)

 

 

• Note the "slow" and "fast" diffusers. Solubility is also an issue in choosing a particular dopant.

SILICON VLSI TECHNOLOGY

1 0

© 2000

by Prentice Hall

Fundamentals,

Practice

and Modeling

 

Upper

Saddle River, NJ.

By Plummer,

Deal and

Griffin

 

 

 

Соседние файлы в папке МММ_Лаб_#1