МММ / 01_Layer_Deposition_Thermal_Oxidation_and_CVD
.pdf
C* = Concentration in the solid oxide which would be in 11 equilibrium with the partial pressure in the bulk of the gas (PG)
C* = HPG
F1 = h(C*-C0) ; h = hG/HkT
Steady state:
F1 = F2 = F3
Ci |
|
C * |
|
|
|
|
|
k t |
|
|
||
|
|
|
|
|
|
CO |
Ci 1 |
|
S |
OX |
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
D |
|
|
|
1 h |
D |
|
|
|
|
|
|||||
|
|
ks |
kstox |
|
|
|
|
|
||||
RUPESH GUPTA |
Indo German Winter Academy |
12
Solution of Deal Grove Model
F F3 kS Ci |
N1 |
dt |
OX |
|
||
|
|
|
||||
dt |
||||||
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
t 2 |
At |
ox |
B t |
|
|
|
|
|
|
|
|
|
|||||||
ox |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2DC * |
|
|
2 |
AX i |
|
|
||||
|
1 |
|
1 |
|
B |
|
X i |
|
|
||||||||||
A 2D |
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
h |
N1 |
|
B |
|
|
|||||||||||
|
kS |
|
|
|
|
|
|
|
|
|
|
||||||||
B C1 exp( |
|
E1 |
) |
|
|
|
|
B |
C2 exp( |
E2 |
) |
||||||||
|
|
|
|
|
A |
kT |
|||||||||||||
|
|
|
|
|
|
||||||||||||||
|
|
|
|
|
kT |
|
|
|
|
|
|
|
|
|
|||||
RUPESH GUPTA |
Indo German Winter Academy |
13
Rate Limiting
The slowest step out of oxidant diffusion and interface reaction will determine the overall process rate.
The resultant oxide growth rate is
tox2 Atox B t
RUPESH GUPTA |
Indo German Winter Academy |
14
Rate Limiting Steps
|
|
tox |
|
|
|
|
|
|
|
|
tox |
|
||
CG |
|
|
|
|
|
|
|
|
CG |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
C* |
|
|
|
|
|
|
|
CS C* |
|||||
|
|
|
|
|
|
|
|
|||||||
CS |
|
|
|
Ci |
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ci |
|
|
Reaction Controlled |
|
Diffusion Controlled |
|||||||||||
|
|
|
Regime |
|
|
Regime |
||||||||
|
|
tox |
|
B |
t |
|
|
tox2 Bt |
||||||
|
||||||||||||||
|
|
|
|
|
|
A |
|
|
|
|
|
|
||
RUPESH GUPTA |
Indo German Winter Academy |
15
Common Oxidation Methods
Dry Oxidation
Si O2 SiO2
Slow Growth
For films up to 100-200 nm
Wet Oxidation
Si 2H2O SiO2 2H2
Faster growth due to high solubility of H2O in SiO2
(Higher B, B/A values )
For thicker films
RUPESH GUPTA |
Indo German Winter Academy |
16
Oxidation Equipment
Quartz |
|
Tube |
Wafers |
|
Resistance Heating
Flat temperature profile maintained using thermocouples
RUPESH GUPTA |
Indo German Winter Academy |
17
OUTLINE
Thermal Oxidation and Model
Factors Affecting Kinetics
o Future Trends: Oxidation
o CVD and Model
o Factors Affecting Kinetics
o Future Trends: CVD
RUPESH GUPTA |
Indo German Winter Academy |
18
Factors Affecting Growth Kinetics
Temperature
B C exp( |
E1 |
) |
B |
C |
|
exp( |
E2 |
) |
|
|
2 |
|
|||||
1 |
kT |
|
A |
|
kT |
|
||
|
|
|
|
|
||||
Crystal Orientation
Pressure
RUPESH GUPTA |
Indo German Winter Academy |
Crystal Orientation |
19 |
|
(111)
Difference more
(110) |
obvious for thin |
|||
1.68 |
|
|
||
|
|
oxides |
||
|
|
|
||
|
|
|
|
|
|
(100) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
orientation |
Most ICs made with (100) Si |
|
|
||
|
|
|||
|
|
|
|
|
RUPESH GUPTA |
Indo German Winter Academy |
Pressure 20
Increase in oxidation rate even at low temperatures
RUPESH GUPTA |
Indo German Winter Academy |
