Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

МММ / 04_lecture5

.pdf
Скачиваний:
33
Добавлен:
11.03.2016
Размер:
799.35 Кб
Скачать

Oxidation of Si

Why spend a whole lecture on oxidation of Si?

Ge has high μe, μh , Ge stable…

 

… but no oxide

GaAs has high μe and direct band…

 

… no oxide

 

 

 

Why SiO2?

 

 

 

 

 

SiO

is stable down to 10-9 Torr , T > 900°C

 

 

2

 

 

 

 

 

 

SiO2 can be etched with HF which leaves Si unaffected

 

 

SiO2

is a diffusion barrier for B, P, As

 

 

 

 

 

SiO

is good insulator, ρ > 1016 Ωcm, E

g

= 8 eV!

 

 

2

 

 

 

O2

 

SiO2

has high dielectric breakdown field, 500 V/μm

 

 

 

 

 

 

 

 

SiO2 dtOxide

SiO2 growth on Si fi clean Si / SiO2 interface

Si

because DSi through SiO2 << DOxy through SiO2

Sept. 19, 2003

3.155J/6.152J

1

 

O2

So SiO2 growth occurs at inside surface

SiO2 dtOxide

 

Si + O2 SiO2

Si

or

 

Si + 2H2O = SiO2 + 2H2

(faster growth, more porous, lower quality)

2

Sept. 19, 2003

3.155J/6.152J

O2

SiO2 dtOxide

Si

Extra free volume

in dangling bonds of

amorphous SiO2 =>

Implications different for field vs. patterned oxide.

Sept. 19, 2003

3.155J/6.152J

3

Cleaning station for removing organic contaminants and native oxide (by HF-dip) from Si wafers.

Oxidation furnaces for controlled growth of oxide layer on Si:

1050 C and steam for field oxide.

Sept. 19, 2003

3.155J/6.152J

4

Probably safe to say that

entire course of semiconductor industry would be different without SiO2.

Device fabrication, especially MOS,

more difficult.

Depositing SiO2 or Al2O3 is not clean.

Sept. 19, 2003

3.155J/6.152J

5

It’s no accident that the world leader in Si chip technology, Intel, has been led by the flamboyant Hungarian, Andy Grove.

As a young researcher at Fairchild Semiconductor, he wrote the book on SiO2 growth: the Deal-Grove model.

Sept. 19, 2003

3.155J/6.152J

6

Deal-Grove model of silicon oxidation

SiO2 growth occurs

at Si / SiO2 interface

because DO2 (SiO 2) >> DSi (SiO 2)

Growth Process limited by

 

O2

1. P(O2) = Pg Cg

Concentration

 

Cg

2.Transport O2 to SiO2 surface across dead layer J1

3.Adhesion of Cs(O2) at SiO2 surface C0

4.

Diffusion O2 through SiO2

J2

5.

Chemical reaction rate

J3

O2

SiO2

Si

dead

 

 

layer

SiO

Si

 

2

 

J1

Cs

 

Co

J2

 

 

Ci

 

 

 

J3

 

 

 

x

Sept. 19, 2003

3.155J/6.152J

7

 

 

Deal-Grove model of silicon oxidation

 

 

 

 

Oxide growth rate

 

 

 

 

 

J1

= J2

 

= J3

 

Ideal gas law: P V = NkT

 

O2

 

 

 

dead

 

 

 

 

 

 

 

 

 

layer

SiO

 

 

Si

 

 

g

Concentration

2

 

 

 

 

Cg

 

 

 

 

 

P

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

Cs

 

 

 

 

= Cg

=

g

 

 

 

 

 

J1

 

 

 

 

V

kT

 

 

 

 

 

Co

 

 

 

 

 

 

 

 

 

 

 

 

 

J2

 

 

 

 

 

 

C = HP

= Hk

TC

s

 

 

 

Ci

 

 

 

0

s

B

 

 

 

 

 

 

 

 

 

(C - C )

 

 

 

 

 

 

 

J

 

 

 

(CggCss )

 

 

 

 

 

 

 

 

 

 

J1 > D

 

Henry’s law

 

 

 

 

 

 

3

 

 

 

tdead layer

 

 

 

 

 

C C

 

 

 

 

x

Turbulence =>

J2 = DO2 (SiO

 

J

= k

C

 

2 ) Cs0 - C0 i

i

 

 

 

 

 

 

 

 

xox

3

 

i

 

 

 

 

 

 

 

 

 

rate constant

J1 = hg(Cg

- Cs)

Diffusion (D cm2/s)

ki

(cm/s)

 

 

 

 

 

 

 

 

 

Equate ideal gas + J1

Equate J2 + Henry to

J3

to J2 + Henry

 

 

 

Ci = fn (Pg ,hg,H,DO2 , xoxide,ki)

 

 

 

Sept. 19, 2003

3.155J/6.152J

 

8

 

 

Deal-Grove model of silicon oxidation

 

 

J1 = J2 = J3

 

 

O2

 

dead

 

 

 

 

 

 

 

layer

SiO

Si

 

 

 

 

 

 

 

 

 

Concentration

C

g

2

 

 

 

 

 

 

 

 

 

 

 

 

 

= fn (Pg ,hg,H,DO2 , xoxide

,ki)

 

 

 

Ci

 

J1

Cs

 

 

 

 

 

 

 

 

 

 

 

 

Co

J2

 

 

 

 

 

 

 

 

 

 

 

 

 

Ci

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ci

=

1

HPg / ki

1

hg

 

 

J3

 

 

 

x

 

 

 

 

 

 

 

 

 

+

oxO

+

h =

 

 

 

x

 

 

 

h

 

ki

HkT

 

 

 

 

 

 

 

D 2

 

 

 

 

 

 

mass

Diffusion

Reaction

(ki = ks in text)

transport

 

J3

 

J1

J2

 

 

 

 

 

 

Slowest process controls concentration of oxygen at interface…

Sept. 19, 2003

3.155J/6.152J

9

 

 

 

Ci

=

 

 

HPg /ki

 

 

 

 

 

 

 

 

1

+

xox

+

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h

DO2

ki

 

 

 

 

 

 

 

 

 

 

 

 

Limits:

Growth

 

mass

 

diffusion

limited by: transport

 

 

 

 

 

 

 

Diffusion limited:

 

 

 

 

 

 

 

 

 

 

 

 

DO2/x <

k , h

,

 

 

 

 

 

 

 

 

 

 

ox

 

i

g

 

 

 

 

 

 

 

 

 

 

O2

Ci = HPg D ki xox

h =

hg

very large

 

 

HkT

reaction

Reaction-rate limited:

ki < hg, DO2/xox

Ci = HPg

Sept. 19, 2003

Slower process controls concentration of oxygen at interface,

which in turn controls growth rate

 

Соседние файлы в папке МММ