Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Книги2 / 1993 Dutton , Yu -Technology CAD_Computer Simulation

.pdf
Скачиваний:
66
Добавлен:
11.03.2016
Размер:
17.91 Mб
Скачать

TECHNOLOGY CAD

COMPUTER SIMULATION

OF IC PROCESSES

AND DEVICES

TECHNOLOGY CAD

COMPUTER SIMUlATION

OF IC PROCESSES

ANDDEVICES

by

Robert w. Dutton

Stanford University

and

Zhiping Yu

Tsinghua University

Springer Science+Business Media, LLC

To our parents who have motivated our love of learning and to our wives who have nurtured our academic and personal growth, and finally to Fely Barrera who sustained us with friendship, humor, and many long hours of word-processing.

Contents

Preface

 

 

 

xiii

1 Technology-Oriented CAD

1

1.1

Introduction. . . . . . . . .........

1

 

1.1.1

IC Technology Development . . . .

1

 

1.1.2

Overview of Subsequent Chapters

3

1.2

Process and Device CAD ...

5

 

1.2.1

Introduction

· .....

5

 

1.2.2

History of Device CAD

5

 

1.2.3

Motivation for Process CAD

7

 

1.2.4

The Role of Process CAD for Device CAD

10

1.3

Process Simulation Techniques ..

11

 

1.3.1

Introduction

· .......

11

 

1.3.2

Numerical Implementation

12

1.4

Interfaces in Process and Device CAD

16

 

1.4.1

Introduction

· .........

16

 

1.4.2

User-Specified Input and Program Output

16

 

1.4.3 Data Transfer from Program To Program

19

 

1.4.4

Future Considerations

20

1.5

CMOS Technology ......

21

 

1.5.1

Introduction

· ....

21

 

1.5.2

Technology Evolution

22

 

1.5.3

The Stanford CMOS Process

26

1.6

Summary

 

32

1.7

Exercises

 

32

1.8

References .

 

35

viii

 

 

 

 

2

Introd uction to SUPREM

37

 

2.1

Introduction ...... .

37

 

2.2

Ion Implantation . . . . .

43

 

 

2.2.1

Gaussian Profiles .

47

 

 

2.2.2

Pearson IV Profiles.

48

 

 

2.2.3

Multi-layer Implantation.

49

 

 

2.2.4

Boltzmann Transport Analysis (BTA)

50

 

2.3

Oxidation . . . . . . . . . . . . . .

53

 

 

2.3.1

Physical Mechanisms ....

53

 

 

2.3.2

Intrinsic Oxidation Kinetics

55

 

 

2.3.3

Pressure Dependence. . . .

58

 

 

2.3.4

Substrate Doping Dependence

60

 

 

2.3.5

Chlorine Ambient

62

 

 

2.3.6

Thin Oxides ..... .

63

 

2.4

Impurity Diffusion . . . . . .

65

 

 

2.4.1

Point Defect Kinetics

66

 

 

2.4.2

Concentration Dependent Diffusion.

68

 

 

2.4.3

Dopant Clustering . . . . . . . . . .

73

 

 

2.4.4

Dopant Segregation ........ .

75

 

 

2.4.5

Oxidation Enhanced Diffusion (OED)

76

 

2.5

Summary

78

 

2.6

Exercises

80

 

2.7

References.

82

3

Device CAD

87

 

3.1

Introduction.

87

 

3.2

Semiconductor Device Analysis

90

 

 

3.2.1

Device Equations ....

90

 

 

3.2.2

User Input for SEDAN.

91

 

3.3

Field-Effect Structures .....

98

 

 

3.3.1

Components of Charge.

98

 

 

3.3.2

Charge Build-up ..

102

 

 

3.3.3

Bulk Charge - QB

105

 

3.4

Bipolar Junction Structures

109

 

 

3.4.1

Introduction

109

 

 

3.4.2

Bipolar Device Operation - Equilibrium

110

 

 

3.4.3

Non-Equilibrium and the Coupled Equations

112

 

 

3.4.4

Minority Carrier Continuity . . .

116

 

 

3.4.5

Analysis of a pn Junction Diode ...... .

118

 

 

 

 

 

IX

 

3.5

Summary

 

128

 

3.6

Exercises

 

129

 

3.7

References.

 

130

4

PN Junctions

 

131

 

4.1

Introduction.

 

131

 

4.2

Carrier Densities: Equilibrium Case

132

 

4.3

Non-Equilibrium .......... .

139

 

4.4

Carrier Transport and Conservation

144

 

4.5

The pn Junction -

Equilibrium Conditions.

147

 

4.6

The pn Junction -

Non-equilibrium.

155

 

4.7

SEDAN Analysis . . . . . . . . . . . . .

166

 

 

4.7.1

Heavy Doping Effects ..... .

176

 

 

4.7.2

Analysis of High-Level Injection

181

 

 

4.7.3

Technology-Dependent Device Effects

190

 

4.8

Summary

 

193

 

4.9

Exercises

 

193

 

4.10

References.

 

194

5

MOS Structures

 

197

 

5.1

Introduction ............. .

197

 

5.2

The MOS Capacitor ........ .

198

 

5.3

Basic MOSFET I-V Characteristics.

208

 

5.4

Threshold Voltage in Nonuniform Substrate

217

 

5.5

MOS Device Design by Simulation . . . . .

224

 

 

5.5.1

Body-bias Sensitivity of Threshold Voltage

225

 

 

5.5.2

Two-region Model . . . . . . . .

231

 

 

5.5.3

MOSFET Design by Simulation.

234

 

5.6

Summary

 

240

 

5.7

Exercises

 

240

 

5.8

References.

 

242

6

Bipolar Transistors

 

243

 

6.1

Introduction ...

 

243

 

6.2

Lateral pnp Transistor Operation

245

 

6.3

Transport Current Analysis ...

252

 

6.4

Generalized Charge Storage Model

260

 

6.,1)

Transistor Equivalent Circuits.

267

 

 

6.5.1

Charge Control Model ...

267

x

6.5.2

Small-Signal Equivalent Circuit . . . .

269

6.5.3

ac Modeling of Junction Capacitances

272

6.6 Second

Order Effects. . . . . . . . . . . . . .

274

6.6.1Base-Width Modulation Due to Base-Collector Bias

 

 

 

- Early Effect . . . . . .

275

 

 

6.6.2

High-Level Injection . . . . .

279

 

 

6.6.3

Series Resistance Effects . . .

282

 

6.7

Transit Time and Cutoff Frequency.

282

 

 

6.7.1

Base Transit Time . . . .

282

 

 

6.7.2

Cutoff Frequency . . . . .

286

 

6.8

Application of Simulation Tools.

288

 

6.9

Summary .

292

 

6.10

Exercises

292

 

6.11

References.

293

7

BiCMOS Technology

295

 

7.1

Introduction............

295

 

7.2

Triple-Diffused BiCMOS . . . . .

296

 

7.3

Buried-Epitaxial Layer BiCMOS

302

 

7.4

Summary .

313

 

7.5

Exercises

315

 

7.6

References.

316

A

Numerical Analysis

317

 

A.1

Introduction. . . . . . . . . . . . . . . . . . . . . .

317

 

A.2

Discretization . . . . . . . . . . . . . . . . . . . . .

319

 

 

A.2.1

Time Integration for Initial Value Problems

322

 

 

A.2.2

Space Discretization . . . . . . .

323

 

A.3

Newton Method and Convergence Issues

329

 

A.4

Device Parameter Computation .

332

 

A.5

Summary .

335

 

A.6

References. . . . . . . . . . . .

335

B

BiCMOS Technology Overview

337

 

B.1

Introduction. . . . . . . . . . . . . . . . . .

337

 

B.2

System Needs of the Technology ......

337

 

B.3

Overview of the Stanford BiCMOS Process

340

 

B.4

Development of BiCMOS Process.

341

 

B.5

Electrical Characteristics .....

350

 

 

 

 

 

xi

B.6

References .............

.

 

353

C Templates for PISCES Simulation

 

 

355

C.l

lD BJT ..............

.

 

356

 

C.l.l

BJT Using ASCII Doping Profile ........

.

356

 

C.l.2

npn Transistor from Stanford BiCMOS Process .

357

C.2

MaS Capacitors

 

 

365

C.3

References .........................

 

.

369

Index

 

 

 

 

370

Preface

In the area of modeling of silicon devices it's fair to say that there have been no major revolution in either technology development or teaching methods within the last decade - evolution is the driving force of the IC industry. As a student more than 20 years ago I cut my first "device engineering teeth" on notes which were prepared by a committee of academic and industrial experts who collectively created the first curricula to teach device physics and electronics. Out of those notes have evolved at least two generations of device text books from across the United States and around the world. The areas of MaS and bipolar device physics are well-covered in virtually all of the available texts and there are many of them that include opto-electronic, compound material and heterojunction devices as well. Moreover, there is a growing literature in the area of advanced device physics and especially for quantum devices. Hence, when we undertook the task of writing this book we had no illusions of making a fundamental breakthrough in the classical text book sense. However, this book does present a new conceptual framework for teaching technology and device design. It allows the student and teacher to actively participate in the learning process by doing things in a new way - "hands-on" learning by means of simulation. In the following I will briefly mention how the teaching techniques are different and to suggest ways to incorporate this approach into existing curricula.

For those of you familiar with circuit analysis and design, the SPICE program is a household word and an essential tool. Over the last decade there indeed has been a revolution in the availability and use of SPICE in teaching electronic circuits. Nonlinear device effects are embedded in the device models, yet students can quickly use SPICE to solve not only dc bias problems but ac small-signal and transient problems for complex and realistic circuits. Over the last decade, there has been steady progress in development and wide acceptance of CAD programs