- •Встраиваемые системы Проектирование приложений на микроконтроллерах семейства 68hc12/hcs12 с применением языка с с. Ф. Баррет
- •Предисловие
- •Структура книги
- •Учебные системы
- •Целевая аудитория
- •Благодарности
- •Глава 1 первое знакомство со встраиваемыми системами
- •1.1. Что такое встраиваемая система?
- •1.2. Особенности встраиваемых систем
- •1.2.1. Работа в реальном времени
- •1.2.2. Миниатюризация размеров и процесс тестирования
- •1.2.3. Минимизация энергии потребления
- •1.2.4. Интерфейс пользователя и интерфейс сопряжения с объектом
- •1.2.5. Многозадачность
- •1.2.6. Минимизация стоимости
- •1.2.7. Ограничение объема памяти
- •1.2.8. Программно–аппаратный дуализм
- •1.3. Введение в микроконтроллеры семейства 68hc12 и hcs12
- •1.4 Микроконтроллеры hcs12
- •1.4.1. Семейство hcs12
- •1.4.2. Обозначения мк
- •1.4.3. Модельный ряд hcs12
- •1.5. Заключение по главе 1
- •1.6. Вопросы и задания Основные
- •Более сложные
- •Исследовательские
- •Глава 2 программирование встраиваемых систем и структурное проектирование
- •2.1. Почему мы программируем микроконтроллеры на Си?
- •2.2. Преимущества программирования на языке ассемблер
- •2.3. Преимущества языков высокого уровня
- •2.3.1. Выбираем язык высокого уровня для программирования встраиваемых систем
- •2.3.2. Краткая история языка Си
- •2.4. Оптимальная стратегия — программирование на Си и на ассемблере
- •2.5. Структурное проектирование
- •2.5.1. Основные положения метода структурного проектирования
- •2.5.2. Документирование программ
- •2.5.3. Как язык Си соотносится со структурным проектированием
- •2.6. Рабочие тетради
- •2.6.1. Порядок ведения записей
- •2.6.2. Содержание записей
- •2.7. Блок схемы алгоритмов
- •2.8. Пример применения
- •2.9. Заключение по главе 2
- •2.10 Что еще почитать?
- •2.11 Вопросы и задания Основные
- •Более сложные
- •Исследовательские
- •Глава 3 основы программирования микроконтроллеров на си
- •3.1. Введение в программирование на Си
- •3.1.1. Глобальные и локальные переменные
- •3.2. Типы данных в Си
- •3.3. Операторы языка Си
- •3.4. Функции
- •3.4.1. Что такое функция?
- •3.4.2. Основная программа
- •3.4.3. Прототипы функций
- •3.4.4. Описание функций
- •3.4.5. Вызов функций, передача параметров, возврат полученных значений
- •3.5. Файлы заголовков
- •3.6. Директивы компилятора
- •3.6.1. Директивы условной компиляции
- •3.7. Конструкции программирования
- •3.8. Операторы для организации программных циклов
- •3.8.1. Оператор for
- •3.8.2. Оператор while
- •3.8.3. Оператор do-while
- •3.9. Операторы принятия решения
- •3.9.1. Оператор if
- •3.9.2. Оператор if-else
- •3.9.3. Оператор if-else if-else
- •3.9.4. Оператор switch
- •3.10. Массивы
- •3.11. Указатели
- •3.12. Структуры
- •3.13. Процесс программирования и отладки микропроцессорной системы
- •3.13.1. Технология создания программного кода
- •3.13.2. Режим отладки bdm
- •3.13.3. Аппаратные и программные средства отладчика p&e от компании pemicro
- •3.13.4. Эмуляторы
- •3.13.5. Логические анализаторы
- •3.14. Особенности компилятора и ассемблера
- •3.15. Заключение по главе 3
- •3.16. Что еще почитать?
- •3.17. Вопросы и задания Основные
- •Более сложные
- •Исследовательские
- •Глава 4 микроконтроллеры 68hc12 и hcs12: архитектура и программирование
- •4.1. Аппаратные средства микроконтроллеров семейства 68hc12
- •4.2. Аппаратные средства мк семейства hcs12
- •4.3. Режимы работы мк семейства 68hc12/hcs12
- •4.3.1. Рабочие режимы
- •4.3.2. Режимы работы отладочной платы m68evb912b32
- •4.4. Назначение выводов мк
- •4.5. Регистры специальных функций мк
- •4.5.1. Виртуальный адрес блока регистров
- •4.6. Порты ввода/вывода
- •4.6.1. Спецификация портов ввода/вывода
- •Регистры управления портами
- •Вопросы для самопроверки
- •Пример применения
- •4.7. Подсистема памяти мк b32
- •Пример применения
- •4.7.1. Карта памяти мк b32
- •4.7.2. Изменение адресов в карте памяти мк
- •4.8. Подсистема памяти мк dp256
- •Вопросы для самопроверки
- •4.9. Состояния сброса и прерывания мк
- •4.9.1. Реакция мк на внешние события
- •4.10. Состояния сброса и прерывания в мк 68hc12
- •4.10.1. Состояние сброса мк
- •Регистры сторожевого таймера и монитора тактирования
- •4.10.2. Прерывания
- •Немаскируемые прерывания
- •Маскируемые прерывания
- •Вопросы для самопроверки
- •3. Каково различие между прерываниями по входам
- •4. Как организовать подсистему прерывания с несколькими внешними запросами для мк семейства 68hc12/hcs12, используя лишь один вход внешнего прерывания
- •4.10.3. Вектора исключений
- •4.10.4. Система приоритетов для исключений
- •1. Внешний сброс по входу
- •5. Немаскируемое прерывание по входу
- •Вопросы для самопроверки
- •4. Какие действия должен предпринять программист, чтобы после начального запуска мк присвоить входу
- •4.10.5. Регистры подсистемы прерывания
- •4.11. Процесс перехода к подпрограмме прерывания
- •Вопросы для самопроверки
- •4.12. Оформление подпрограммы прерывания на Си
- •4.13. Система тактирования
- •4.13.1.Система тактирования отладочной платы mc68hc912b32evb
- •4.14. Подсистема реального времени — модуль таймера
- •4.14.1. Структура модуля таймера
- •4.14.2. Счетчик временной базы
- •Особенности счетчика временной базы
- •Флаг переполнения счетчика
- •Определение длительности временных интервалов
- •Сброс счетчика временной базы
- •Вопросы для самопроверки
- •4.14.3. Регистры для управления счетчиком временной базы
- •Регистр управления модулем таймера
- •Регистр счетчика временной базы
- •Регистр масок таймера 2
- •4.14.4. Каналы захвата/сравнения
- •Режим входного захвата
- •Вопросы для самопроверки
- •Режим выходного сравнения
- •Канал 7 в режиме выходного сравнения
- •Регистры для управления каналами захвата/сравнения
- •Регистры управления таймером 3 и 4
- •Регистр масок таймера 1
- •Регистр масок таймера 2
- •Регистр флагов таймера 1
- •Регистр флагов таймера 2
- •Регистры данных каналов захвата/сравнения
- •Вопросы для самопроверки
- •Примеры работы с таймером
- •Измерение частоты и периода логического сигнала
- •Генерация импульсной последовательности
- •Генерация импульсной последовательности с использованием прерывания
- •4.14.5. Счетчик событий
- •Режимы работы счетчика
- •Регистры управления счетчиком событий
- •Регистр управления счетчиком событий
- •Регистр флагов счетчика событий
- •Регистр текущего состояния счетчика событий
- •Пример использования счетчика событий
- •4.15. Модуль меток реального времени
- •Пример использования модуля меток реального времени
- •4.16. Модуль таймера ect в составе мк мc68hc12be32 и hcs12
- •4.16.1. Небуферированные каналы входного захвата
- •4.16.2. Буферированные каналы входного захвата
- •4.16.3. Особенности счетчиков событий
- •4.16.4. Регистры управления модуля est
- •Регистр управления порядком перезаписи
- •Регистр управления режимом входного захвата
- •Регистр управления счетчиком задержки
- •Регистр управления 16-разрядным вычитающим счетчиком
- •Регистр коэффициента счета вычитающего счетчика
- •Регистр флагов вычитающего счетчика
- •4.17. Обмен информацией в последовательном коде: многофункциональный последовательный интерфейс
- •4.17.1. Термины последовательного обмена
- •Вопросы для самопроверки
- •4.18. Контроллер асинхронного обмена sci
- •Вопросы для самопроверки
- •4.18.1. Передатчик контроллера sci
- •4.18.2. Приемник контроллера sci
- •4.18.3. Регистры контроллера sci
- •Регистры скорости обмена sCxBdh и sCxBdl
- •Регистры управления sCxCr1 и sCxCr2
- •Регистры состояния sCxSr1 и sCxSr2
- •Регистры данных sCxDrh и sCxDrl
- •Вопросы для самопроверки
- •4.18.4. Алгоритмы программного обслуживания контроллера sci
- •4.18.5. Пример программирования контроллера sci
- •4.19. Синхронный последовательный интерфейс spi
- •4.19.1 Концепция интерфейса spiФункциональная схема обмена между двумя контроллерами spi
- •4.19.2. Алгоритмы работы контроллера spi
- •Вопросы для самопроверки
- •4.19.3. Регистры контроллера spi
- •Регистр скорости обмена sPxBr
- •Регистры управления sPxCr1 и sPxCr2
- •Регистр данных spCxDr
- •Регистр данных порта s
- •Регистр направления передачи порта s
- •Вопросы для самопроверки
- •4.19.4. Алгоритмы программного обслуживания контроллера spi
- •4.19.5 Периферийные ис с интерфейсом spi
- •4.20. Введение в теорию аналого-цифрового преобразования
- •4.20.1. Частота дискретизации сигнала
- •4.20.2. Представление аналоговой величины в цифровом коде
- •4.20.3.Квантование по уровню и разрешающая способность
- •4.20.4 Скорость потока данных оцифровки
- •Вопросы для самопроверки
- •4.21. Принцип действия ацп
- •4.21.1. Ацп последовательного приближения
- •Вопросы для самопроверки
- •4.22. Подсистема аналого-цифрового преобразования мк 68hc12
- •4.22.1 Структура и порядок функционирования
- •4.22.2. Регистры управления модуля atd
- •Группа регистров управления
- •Регистры управления atdctl0 и atdctl1
- •Регистр управления atdctl2
- •Регистр управления atdctl3
- •Регистр управления atdctl4Формат регистра atdctl4
- •Регистр управления atdctl5
- •Вопросы для самопроверки
- •Регистр состояния atdstat
- •Регистр данных порта portad
- •Регистры результата adr0h…adr7h
- •Вопросы для самопроверки
- •Тестовый регистр atdtest
- •4.22.3. Пример программирования модуля atd
- •Цифровой вольтметр
- •4.22.4. Обслуживание прерываний от модуля atd
- •4.23. Особенности модуля atd в составе мк семейства hcs12
- •4.23.1. Выбор разрядности ацп
- •4.23.2. Представление результата измерения
- •4.23.3. Запуск измерительной последовательности от внешнего сигнала
- •4.23.4. Программируемое число преобразований в измерительной последовательности
- •4.23.5. Увеличение числа аналоговых входов
- •4.23.6. Регистры модуля atd hcs12
- •Регистр состояния atdstat0
- •Регистр состояния atdstat1
- •Регистр разрешения цифрового входа порта atddien
- •4.24. Подсистема широтно-импульсной модуляции
- •4.24.1. Структура модуля pwm
- •4.24.2. Режимы центрированной и фронтовой шим
- •4.24.3. Система тактирования
- •4.24.4. Регистры модуля pwm
- •Регистр конфигурации pwclk
- •Регистр конфигурации pwpol
- •Регистр разрешения работы каналов pwen
- •Регистр дополнительного делителя pwpres
- •Регистры делителей pwscnt0/pwscnt1 и pwscal0/pwscal0
- •Регистры счетчика каналов pwcnTx
- •Регистры периода каналов pwpeRx
- •Регистры коэффициента заполнения каналов pwdtYxФормат регистров коэффициента заполнения pwdtYx
- •Регистры коэффициента заполнения каналов pwdtYx
- •Регистр управления pwctl
- •Регистр специальных режимов pwtst
- •Регистры работы с портом p
- •4.24.5. Примеры программирования модуля pwm
- •Инициализация модуля pwm, пример 1
- •Инициализация модуля pwm, пример 2
- •4.25. Ограничение энергии потребления
- •4.25.1. Как остановить мк 68hc12
- •4.25.2. Как вывести мк 68hc12 из состояния пониженного энергопотребления
- •4.26. Советы по использованию платы отладки mc68evb912b32
- •4.27. Заключение по главе 4
- •4.28. Что еще почитать?
- •4.29. Вопросы и задания Основные
- •Исследовательские
- •Глава 5 основы сопряжения мк с устройствами ввода/вывода
- •5.1. Электрические характеристики мк 68hc12
- •5.1.1. Нагрузочные характеристики
- •5.1.2. Что произойдет, если Вы должным образом не учтете электрические характеристики периферийных ис?
- •5.1.3. Входные и выходные характеристики логических элементов
- •5.2. Устройства дискретного ввода: кнопки, переключатели, клавиатуры
- •5.2.1. Кнопки и переключатели
- •5.2.2. Dip переключатели
- •5.2.3. Клавиатуры
- •5.3. Устройства индикации: светодиоды, семисегментные индикаторы, индикаторы логического выхода с тремя состояниями
- •5.3.1. Светодиоды
- •5.3.2. Семисегментные индикаторы
- •5.3.3. Индикаторы для логического выхода с тремя состояниями
- •5.4. Программное обслуживание дискретных входов и выходов
- •5.5. Подавление механического дребезга контактов переключателей
- •5.5.1. Аппаратная защита от механического дребезга контактов
- •5.5.2. Программная защита от механического дребезга контактов
- •5.5.3. Пример программной защиты
- •5.6. Жидкокристаллические индикаторы
- •5.6.1. Краткие сведения о жидкокристаллических индикаторах
- •5.6.2. Сопряжение мк с символьным жк индикатором
- •5.6.3 Сопряжение мк с графическим жк дисплеем
- •5.7. Управление электрическим двигателем
- •5.7.1. Силовые полупроводниковые ключи
- •5.7.2. Оптоэлектронная потенциальная развязка
- •5.7.3. Инвертор напряжения
- •5.8. Кодовый замок
- •5.8.1. Схема подключения периферийных устройств
- •5.8.2. Программа управления
- •5.9. Интерфейс мк с аналоговыми датчиками
- •5.10. Интерфейс rs-232
- •5.11. Заключение по главе 5
- •5.12. Что еще почитать?
- •5.13. Вопросы и задания Основные
- •Более сложные
- •Исследовательские
- •Глава 6 добро пожаловать в реальный мир!
- •6.1. Ужасные истории об ошибках проектирования
- •6.1.1. Случай квадратичного генератора
- •6.1.2. Случай таймера для лазерного излучения
- •6.2. Правила обращения с микросхемой 68нс12 и рекомендации по проектированию
- •6.2.1. Рекомендации по обращению со cmos
- •6.2.2. Рекомендации по проектированию на cmos
- •6.3. Исследование помех
- •6.3.1. Что такое помехи
- •6.3.2. Электромагнитная совместимость
- •6.3.3. Спецификации системы помех — не будем крепки задним умом!
- •6.3.4. Методы снижения помех
- •6.4. Защитное программирование
- •6.5. Методики испытаний на наличие помех
- •6.5.1. Обнаружение помех
- •6.5.2. Испытание на чувствительность к помехам
- •6.5.3. Испытания на электромагнитную совместимость
- •6.6. Управление энергопотреблением
- •6.6.1. Параметры потребляемой мощности для микроконтроллера 68hc12
- •6.6.2. Типы батарей
- •6.6.3. Емкость батарей
- •6.6.4. Стабилизация напряжения
- •6.6.5. Схемы супервизора для микропроцессора
- •6.6.6. Меры энергосбережения
- •6.7. Заключение по главе 6
- •6.8. Что еще прочитать?
- •6.9. Вопросы и задания Основные
- •Более сложные
- •Исследовательские
- •Глава 7 примеры встроенных систем управления
- •7.1. Система привода робота, движущегося вдоль стенок лабиринта
- •7.1.1. Описание проекта
- •7.1.2. Подсистемы 68hc12, используемые в проекте
- •7.1.3. Компоненты системы
- •7.1.4. Структура программы и блок-схема алгоритма
- •7.1.5. Программный код
- •7.2. Лазерный проектор
- •7.2.1. Описание проекта
- •7.2.2. Подсистемы 68hc12 используемые в проекте
- •7.2.3. Описание некоторых компонентов системы
- •7.2.4. Аппаратные средства
- •7.2.5. Структура программы и блок-схема алгоритма
- •7.2.6. Программный код
- •7.2.7. Испытания устройства
- •7.2.8. Заключительные испытания системы управления
- •7.3. Цифровой вольтметр
- •7.3.1. Описание проекта
- •7.3.2. Системы 68hc12 используемые в проекте
- •7.3.3. Расчет интерфейса модуля atd
- •7.3.4. Структура программы и блок-схема алгоритма
- •7.3.5. Программа управления
- •7.3.6. Измерение неэлектрических величин
- •7.4. Стабилизация скорости вращения двигателя с использованием оптического тахометра
- •7.4.1. Описание проекта
- •7.4.2. Немного теории
- •7.4.3. Анализ
- •7.4.4. Структура программы и блок-схема алгоритма
- •7.4.5. Программный код
- •7.4.6. Испытания
- •7.5. Парящий робот
- •7.5.1. Описание проекта
- •7.5.2. Системы hcs12 используемые в проекте
- •7.5.3. Теоретическое обсуждение
- •7.5.4. Структура программы и блок-схема алгоритма
- •7.5.5. Программный код
- •7.5.6. Некоторые комментарии
- •7.6. Система защиты компьютера, основанная на нечеткой логике
- •7.6.1. Описание проекта
- •7.6.2. Использование системы hcs12
- •7.6.3. Основы теории
- •7.6.4. Структура программы и блок-схема алгоритма
- •7.6.5. Описание системы
- •7.6.6. Обсуждение проекта
- •7.6.7. Программный код
- •7.6.8. Некоторые комментарии
- •7.7. Электронная версия игры в «15»
- •7.7.1. Описание проекта
- •7.7.2. Системы hcs12 используемые в проекте
- •7.7.3. Основы теории
- •7.7.4. Схемное решение, структура программы и блок-схема алгоритма
- •7.7.5. О компонентах системы
- •7.7.6. Программный код
- •7.7.7. Некоторые комментарии
- •7.8. Программирование резидентного Flash пзу микроконтроллера b32 в составе платы отладки mc68hc912b32evb
- •7.9. Заключение по главе 7
- •7.10. Что еще прочитать?
- •7.11. Вопросы и задания Основные
- •Более сложные
- •Исследовательские
- •Глава 8 операционные системы реального времени
- •8.1. Рассказ: официант — «живая» операционная система реального времени
- •8.2. Что является целью осрв?
- •Вопросы для самопроверки
- •8.3. Обзор концепций
- •8.3.1. Требования к динамическому распределению ram
- •Вопросы для самопроверки
- •8.3.2. Динамическое распределение памяти
- •8.3.3. Структуры данных
- •8.4. Основные понятия
- •8.4.1. Что такое задача?
- •8.4.2. Управление задачами
- •8.4.3. Компоненты многозадачных систем
- •8.5. Типы операционных систем реального времени
- •8.5.1. Системы с циклическим опросом
- •8.5.2. Циклический опрос с прерываниями
- •8.5.3. Карусельные системы
- •8.5.4. Смешанные системы
- •8.5.5. Системы с управлением по прерыванию
- •8.5.6. Кооперативная многозадачность
- •8.5.7. Многозадачные системы с преимущественным приоритетом
- •8.6. Проблемы осрв
- •8.6.1. Конкуренция Другой рассказ
- •8.6.2. Повторная входимость
- •8.6.3. Межзадачные связи
- •8.6.4. Безопасность, проверка и безотказная работа
- •8.6.5. Главный вопрос
- •8.7. Выполнение операционной системы реального времени
- •8.8. Пример применения: осрв циклического опроса
- •8.8.1. Краткий обзор проекта
- •8.8.2. Пример кода
- •8.8.3. Испытание контроллера усилителя
- •8.9. Другая прикладная программа: цикл опроса с прерываниями
- •8.10. Сложное прикладное устройство: имитатор осрв
- •8.10.1. Краткий обзор проекта
- •8.10.2. Типовой код
- •8.11.Заключение по главе 8
- •8.12. Что еще почитать?
- •8.13. Вопросы и задания Основные
- •Более сложные
- •Исследовательские
- •Глава 9 распределенные сети с интерфейсом msCan
- •9.1. Компьютерные сети
- •9.2. Промышленные сети
- •9.3. Сети с протоколом can
- •9.3.1. Протокол can
- •9.3.2. Модуль контроллера последовательного обмена msCan12
- •Подсистема прерывания контроллера msCan12.
- •9.3.3. Проблемы синхронизации
- •9.3.4. Конфигурирование модуля msCan12 для работы в сети
- •9.4. Различия между контроллерами msCan в составе 68hc12 и hcs12
- •9.5. Пример программирования контроллера msCan Схема включения аппаратных средств для двух отладочных плат Axiom
- •9.6. Контроллер последовательного обмена bdlc
- •9.7. Заключение по главе 9
- •9.8. Что еще почитать?
- •9.9. Вопросы и задания Основные
- •Более сложные
- •Исследовательские
Флаг переполнения счетчика
Если длительность измеряемых или формируемых микроконтроллером временных интервалов превышает период переполнения счетчика временной базы, то возникает необходимость в подсчете числа периодов переполнения этого счетчика. При достижении максимального кода $FFFF счетчик не останавливается, он продолжает считать дальше. Поэтому при поступлении следующего тактового импульса в счетчике установится код $0000. Такое изменение кода называется событием переполнения счетчика и фиксируется установкой бита TOF в регистре управления счетчиком TFLG2 (рис. 4.27). Триггер TOF называют триггером переполнения счетчика. Этот триггер может быть считан под управлением программы, или, если прерывания по событию переполнения счетчика разрешены, то установленный в 1 триггер TOF генерирует запрос на прерывание. Прерывание по переполнению счетчика временной базы имеет свой собственный вектор и собственный бит разрешения прерывания TOI в регистре TMSK2 (рис. 4.27).
Если код счетчика временной базы изменился с $FFFF на $0000, то триггер TOF устанавливается в 1. При использовании этого флага для вызова прерываний следует позаботиться о том, чтобы флаг был сброшен под управлением подпрограммы прерывания до наступления следующего переполнения таймера. Для сброса (установки в 0) флага TOF следует записать 1 в бит 7 регистра TMSK2, т.е. выполнить любую команду установки в 1 этого флага. Вышесказанное не ошибка! Большинство флагов регистров специальных функций МК семейства 68HC12/HCS12, генерирующих разнообразные запросы на прерывание, сбрасываются в 0 посредством записи 1 в находящийся в состоянии 1 бит флага. Мы обсудим ниже варианты программного кода, которые могут быть использованы для сброса различных флагов, в том числе и флага переполнения счетчика временной базы.
Если в прикладной задаче необходимо измерить временной интервал, значительно превышающий по длительности период переполнения счетчика временной базы, то следует организовать дополнительный счетчик в одной из ячеек памяти. Содержимое этого счетчика будет инкрементироваться подпрограммой прерывания при каждом переполнении счетчика.
Определение длительности временных интервалов
Во многих приложениях возникает необходимость определения длительности временного интервала между двумя изменениями сигнала на одной из линий порта. Эта задача может быть решена двумя способами.
При первом способе счетчик временной базы сбрасывается в момент первого изменения сигнала. Обнуление счетчика можно произвести в подпрограмме прерывания по событию входного захвата, которое соответствует первому изменению исследуемого сигнала. В этой же подпрограмме подсистема входного захвата перепрограммируется на детектирование второго события в исследуемом сигнале. Счетчик временной базы продолжает наращивать код. В момент второго изменения сигнала, которое фиксирует подсистема входного захвата, текущий код счетчика запоминается в специальном двухбайтовом регистре. Если в процессе слежения за сигналом переполнений счетчика временной базы не было, то запомненный код и есть искомая длительность временного интервала, выраженная в числе периодов частоты тактирования счетчика временной базы.
При втором способе счетчик временной базы считает непрерывно, он никогда принудительно не обнуляется. В момент первого изменения сигнала подсистема входного захвата запоминает текущее значение кода счетчика временной базы в регистре и генерирует запрос на прерывание. В подпрограмме прерывания по событию входного захвата этот двухбайтовый код программно считывается и запоминается в оперативной памяти МК под именем Start. В этой же подпрограмме подсистема входного захвата перенастраивается на детектирование второго изменения сигнала. Когда это событие происходит, подсистема входного захвата опять запоминает новое текущее значение кода счетчика временной базы и генерирует запрос на прерывание. В подпрограмме прерывания новый код счетчика запоминается под именем Stop. Если в процессе слежения за сигналом переполнений счетчика временной базы не было, то искомая длительность временного интервала, выраженная в числе периодов частоты тактирования счетчика временной базы, определяется как (Stop – Start).
а) Вариант 1: Код Stop > Код Start, переполнений счетчика временной базы за время измерения не было
б) Вариант 2: Код Start > Код Stop, за время измерения было одно переполнение счетчика временной базы
в) Вариант 3: Код Stop > Код Start, за время измерения было N переполнений счетчика временной базы
г) Вариант 4: Код Start > Код Stop, за время измерения было N переполнений счетчика временной базы
д) Вариант 5: Код Start = Код Stop, за время измерения было N переполнений счетчика временной базы
Рис. 4.29. Диаграммы, поясняющие преобразования кодов для расчета длительности измеряемого временного интервала
Опытный разработчик всегда использует второй способ. По отношению к первому способу он обладает двумя преимуществами:
• Необходимое в первом способе обнуление счетчика может вызвать нарушение правильной работы других каналов таймера, которые также используют для отсчета временных интервалов код счетчика временной базы. Второй способ не нарушает естественный порядок счета счетчика временной базы, и, следовательно, создает «комфортные» условия для работы оставшихся семи каналов модуля таймера.
• Второй способ обладает большей точностью. При первом способе момент первого изменения сигнала отмечается нулевым кодом счетчика, который будет установлен только после перехода к подпрограмме прерывания. Этот процесс может занять от 10 до 20 тактов fBUS . При втором способе аппаратные средства подсистемы входного захвата фиксируют первое изменение сигнала аппаратно, и ошибка не будет составлять более одного такта fBUS .
Рассмотрим более подробно вычисление реальной длительности измеряемого сигнала по второму способу. На рис. 4.29 показаны пять возможных ситуаций, в которых подсистемой входного захвата зафиксированы совершенно одинаковые коды начала и конца измеряемого временного интервала. В первом случае (рис. 4.29,а) код Stop превышает код Start, и переполнений счетчика временной базы не было. Тогда очевидно, что измеряемая длительность временного интервала TIME = Stop – Start. Во втором случае (рис. 4.29,б) код Stop меньше, чем код Start, и между изменениями сигнала было всего одно переполнение счетчика временной базы:
TIME = (216 – Start ) + Stop = 216 + (Stop – Start )
Рассмотрев остальные случаи (рис. 4.29, в,г,д), можно убедиться, что в каждом из случаев расчет искомого временного интервала следует вести по формуле:
TIME = 216 × n + (Stop – Start ),
где n — число переполнений счетчика временной базы, которое случилось между двумя событиями фиксации изменения сигнала подсистемой входного захвата.
Код TIME отражает длительность временного интервала в периодах частоты тактирования счетчика временной базы. Во многих прикладных задачах вычисление реальной длительности в миллисекундах или секундах не производится. Если же это необходимо, то МК должен выполнить дополнительную операцию умножения:
tIZM = TIME × (TCNTclock ),
где TCNTclock — период частоты тактирования счетчика временной базы.