
- •1 Диод Ганна. Математическая модель диода Ганна
- •Математические модели диодов
- •2 Эквивалентная схема генератора на диоде Ганна
- •3 Режимы работы генератора на диодах Ганна. Оптимальные параметры диода Ганна
- •4 Квазилинейная теория диодных автогенераторов
- •5 Нч колебания в цепи питания диода
- •Основные схемы сглаживающих фильтров питания
- •6 Эквивалентная схема дг
- •7 Методика проектирования электрических схем диодных автогенераторов.
- •8 Пример проектирования цепи свч генератора на диоде Ганна. Конструирование диодных автогенераторов
- •9 Полевой транзистр свч. Нелинейная эквивалентная схема птш.
- •10 Проектирование усилителя мощности на птш
- •11 Общая характеристика малошумящих усилителей
- •12 Основные характеристики регенеративных резонансных усилителей
- •Теоретические основы
- •14 Параметрические диоды. Одноконтурные и двухконтурные ппу.
- •15 Методы улучшения характеристик ппу
- •16 Пример расчета двухконтурного ппу. Конструкции ппу.
- •§2. Теория
- •17 Транзистор. Транзисторный усилитель свч. Общие сведения.
- •18 Бесструктурные модели транзистора свч
- •19 Устойчивость транзисторных усилителей свч.
- •20 Примеры расчета узкополосных усилителей
- •21 Особенности построения транзисторных усилителей свч. Практические схемы транзисторных усилителей
- •22 Антенны свч в интегральном исполнении. Общие сведения
- •23 Основные типы излучателей. Плоскостные излучатели
- •24 Расчет основных характеристик антенн
- •Полоса пропускания антенны
- •Поляризация электромагнитных волн
- •Входной импеданс антенны
- •Коэффициент стоячей волны (kсв)
- •Диаграмма направленности (дн)
- •Коэффициент направленного действия (кнд)
- •Коэффициент усиления (ку)
- •Коэффициент полезного действия (кпд)
- •Шумовая температура
- •25 Печатные антенные решетки
- •26 Активные фазированные антенные решетки. Общие сведения
- •Сравнение с пассивной решёткой[править | править вики-текст]
- •Недостатки[править | править вики-текст]
- •Рассеивание мощности[править | править вики-текст]
- •Стоимость
- •Приёмо-передающий модуль
- •Приёмный канал
- •Передающий канал
- •27 Общие методы оценки энерегетических параметров афар
- •28 Оптимизация массогабаритных характеристик афар. Стоимостные характеристики афар
28 Оптимизация массогабаритных характеристик афар. Стоимостные характеристики афар
Прогресс
в создании новых типов самолетов и
ракет, ставший особенно интенсивным к
середине XX века, привел к существенному
росту скоростей целей и уменьшению их
эффективной поверхности рассеяния
(ЭПР) [1-4]. Это потребовало значительного
усовершенствования радиолокационных
станций как
одного из наиболее оптимальных средств
обнаружения и наблюдения за воздушными
целями. Именно в этот период фазированные
антенные решетки (ФАР) начали широко
внедряться в
различного
назначения. Однако их разработка
показала, что замена зеркальной антенны
на пассивную ФАР увеличивает потери
энергии в высокочастотной части
в
несколько раз. Для сохранения тактических
характеристик
эти
потери приходилось компенсировать
увеличением выходной мощности передатчика,
что влекло за собой увеличение веса и
объема. Одновременно возрастала
потребляемая мощность
Для установленной
на воздушном носителе или космической
платформе, такое увеличение объема,
веса и энергопотребления обычно
практически невозможно. Да и для наземных
радаров, особенно имеющих большую
дальность обнаружения целей, оно является
проблематичным. Создание новых типов
самолетов и ракет привело к росту
скоростей цели и уменьшению их ЭПР. Это
потребовало от радаров применения
электрического сканирования луча и
увеличения излучаемой мощности.
Использование же в них пассивных ФАР
приводило к увеличению объема и веса
аппаратуры, не позволяющему решить
задачу - «повышение мощности - сохранение
мобильности». Одним из ее реальных
решений явился переход к использованию
в
активных
фазированных антенных решеток (АФАР)
[4-6].
Современная радиотехническая обстановка характеризуется быстроменяющейся радиосценой при наличии пассивного и активного противодействия, требующая разработки многофункциональных радиоэлектронных комплексов (РЭК), легко адаптируемых к конкретным условиям
в окружающей помеховой ситуации, и значительного усовершенствования характеристик всех видов РЭК (бортовых, наземных) и радиосистем (локационных, связных, навигацнонных), находящихся в составе комплекса. Одной из наиболее жизненно важных систем РЭК является антенный модуль, в значительной степени определяющий характеристики комплекса в целом (точность обнаружения и наведения, дальность действия, возможность многофункциональной работы в помеховых условиях). Для построения таких модулей были внедрены в РЭК АФАР различного назначения, позволяющие эффективно решать многие задачи вреальном масштабе времени. Опыт первых разработок наземных АФАР позволил разработать теорию и технику их проектирования (см. гл. 2.3), но в то же время показал, что АФАР не удается разрабатывать традиционными методами, когда сначала создаются отдельные элементы: антенна, передатчик, высокочастотный тракт и т.п., а потом из них формируется система.
В составе АФАР все эти элементы взаимосвязаны, интенсивно влияют на параметры друг друга и, в результате, определяют электродинамические характеристики решетки, и поэтому АФАР рассматривается как единый комплекс, а ее проектирование — это системная задача. Разработка РЭК с АФАР приводит к существенному изменению процесса проектирования других систем комплекса, начиная с обработки сигнала и кончая источником питания. К настоящему времени теоретические исследования, результаты моделирования, опыт разработки и испытаний радиокомплексов с АФАР позволили сформулировать достоинства и недостатки АФАР.
Достоинства АФАР:
возможность создания на их основе принципиально новых интегрированных РЭК, обеспечивающих многофункциональную работу с гибким управлением пространственными характеристиками и высоким энергетическим потенциалом, адаптацию к быстроменяющимся условиям и сложной помеховой обстановке, тем самым удовлетворяя все возрастающим требованиям к мощностным и массо-габаритным характеристикам антенных систем различного назначения; высокий уровень излучаемой мощности, обеспечиваемой суммированием в пространстве многих маломощных сигналов, что позволяет значительно превзойти мощностные характеристики одиночного фидерного тракта без опасности электрического пробоя;
высокая
надежность, обеспечиваемая наличием
избыточных элементов и их функциональными
возможностями (наработка на
отказ твердотельных усилителей составляет передатчик
на ЛБВ - 300 500 ч [7, 9], отказ в твердотельном
передатчике мгновенно не наступает и
неисправности накапливаются постепенно);
при избыточности активных модулей АФАР и периодичности обслуживания наработка на отказ АФАР перестает влиять на надежность РЭК;
простота эксплуатации твердотельных АФАР из-за отсутствия высокого напряжения (питающие напряжения активных модулей достаточно низкие - 24...30 В) и, благодаря высокой фазовой стабильности ретулировкаусилителей в процессе эксплуатации не требуется, их замена легко осуществляется в период регламентных работ), РЭК с АФАР проектируются как необслуживаемые системы;
малые массогабаритные характеристики твердотельных приемопередающих модулей (ППМ) АФАР, позволяющие проектировать многоэлементные решетки с высоким энергетическим потенциалом Опыт проектирования твердотельных АФАР показал, что при достижении средней мощности применяемых транзисторов (40 вт) массогабаритные характеристики решетки значительно лучше аналогичных характеристик антенных систем с передатчиком на электронно-вакуумных приборах, дополнительный выигрыш в массе и габаритных размерах дает отсутствие мощного высоковольтного модулятора, позволяющего разместить всю аппаратуру АФАР вместе с источниками питания, на одном бортовом или наземном транспортном средстве);
значительно ослаблены вопросы наличия потерь в распределительных трактах на общие характеристики системы, так как усилительные устройства в ППМ позволяют их компенсировать, а отсутствие потерь на высоком уровне мощности в делителях и фазовращателях позволяет упростить и удешевить эти устройства, и одновременно повысить быстродействие системы управления лучом;
работа в более широкой полосе рабочих частот и секторе сканирования с управляемой поляризацией, что позволяет построить на базе АФАР широкополосные и сверхширокополосные антенные системы с электрическим сканированием на СКИ (см. гл. 10), обнаруживающие не только малозаметные цели (или источники), но и осуществляющие идентификацию определяемых объектов;
выигрыш
в обработке сигнала (см. гл. 8) - для
бортовых он
составляет 6 дБ, что увеличивает дальность
действия на 40 %, кроме того РЛС с АФАР
позволяют формировать: провалы в ДН в
направлении средств радиоэлектронной
борьбы; несколько лучей, обеспечивающих
одновременные режимы: воздух-воздух,
воздух-поверхность, обход-облет
препятствий; независимые ДН на передачу
и прием. Недостатки АФАР:
высокая стоимость (на порядок и более) как при проектировании, так и при изготовлении;
сложность построения антенной системы — из-за наличия дополнительных элементов (фазовращателей,усилителей, управляемых
аттенюаторов) в каждом канале АФАР, требующих разработки и создания новой элементной базы - ППМ со встроенными усилителями, фазовращателями и аттенюаторами;
низкий КПД (примерно в 2 раза меньше) маломощных транзисторных усилительных устройств по сравнению с мощными передатчиками ФАР, что приводит к конструктивно-технологическим трудностям теплоотвода в антенном полотне решетки, радиационной стойкости и надежности элементов;
отсутствие методологической базы при комплексном подходе к проектированию АФАР;
отсутствие метрологического обеспечения при производстве, контроле и эксплуатации.
В процессе реализации РЭК с АФАР потребуется создать эксплуатационно-ремонтную базу и проверочное оборудование, затраты на которые могут быть соизмеримы со стоимостью разработки самой АФАР. Однако несомненный прогресс в разработке интегрированных высокочастотных ППМ будет способствовать созданию твердотельных АФАР [9, 10]. В то же время использование АФАР в РЭК экономически оправдано тогда, когда сам комплекс должен обеспечивать многофункциональную работу при высоком энергетическом потенциале, мобильности и адаптации к быстроменяющейся обстановке в условиях активного радиопротиводействия.