Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ботаника клетки.docx
Скачиваний:
119
Добавлен:
10.03.2016
Размер:
3.41 Mб
Скачать

13

  1. Определение клетки. Понятие о протопласте

КЛЕТКА, элементарная живая система, основная единица строения и жизнедеятельности всех организмов, обладающая собственным обменом веществ, способная к самостоятельному существованию, самовоспроизведению и развитию. Все живые организмы либо, как многоклеточные животные, растения и грибы, состоят из множества клеток, либо, как многие простейшие и бактерии, являются одноклеточными организмами. Основными структурными частями клетки являются: оболочка, цитоплазма, ядро, вакуоль. Живая часть клетки (цитоплазма, ядро) называется протопластом.

Схема строения растительной клетки: 1 - цитоплазма, 2 - ядро с хроматином, 3 - митохондрии, 4 - хлоропласты, 5 - хромопласты, 6 - крахмальные зёрна, 7 - аппарат Гольджи, 8 - эндоплазматическая сеть, 9 - вакуоли с включениями, 10 - клеточная стенка, 11 - срединная пластинка.

ПРОТОПЛАСТ (прото... и plastos — вылепленный, образованный), все содержимое клетки, за исключением клеточной оболочки. Изолировать протопласты можно из тканей различных органов растения (листа, стебля, корней, плодов, клубней), а также из каллюсных или суспензионных клеток. Чаще всего работают с полученными из мезофилла листа протопластами, которые обладают высокой способностью к развитию. Эта способность изолированных протопластов, культивируемых на питательных средах с фитогормонами, вновь синтезировать клеточную стенку, делиться, образовывать каллюс и регенерировать целое растение обусловило их широкое использование в клеточной инженерии. Регенерировавшие из протопластов целые растения характеризуются широкой изменчивостью, что используется для получения мутантов (сомаклональных вариантов) в искусственных условиях.

Протопласты могут образовываться также у дрожжей и других микроорганизмов в результате автолиза, мутаций, действия антибиотиков и других агентов, приводящих к потере клеточной оболочки. Микоплазмы и L-формы бактерий также представляют собой протопласты. Экспериментальным путем их получают чаще всего при действии на клетки различными гидролазами. Высокая осмотическая чувствительность протопластов позволяет легко их лизировать и получать нативные макромолекулы и структурные компоненты клетки, необходимые для проведения генетических и молекулярно-биологических исследований. Протопласты микроорганизмов используют также при изучении экспрессии внесенных в них чужеродных генетических матриц, а последующая регенерация оболочки позволяет проследить экспрессию экзогенной информации в ряде клеточных поколений. В растительных, клетках, как в протопласте, так и в клеточном соке, часто встречаются различные оформленные частицы — включения (кристаллы, крахмальные зёрна, капли масла и др.).

13. Типы кристаллических включений и их значение в анализе лекарственного растительного сырья

Образование включений вызвано избыточным накоплением некоторых продуктов обмена веществ в определенных участках клетки – в вакуоли, гиалоплазме, различных органеллах, реже в клеточной стенке. Эти вещества часто выпадают в осадок в аморфном виде или в форме кристаллов – включений.

Кристаллы, содержащиеся в растениях, чаще всего состоят из оксалата кальция и имеют разную форму. Друзы - шаровидные образования, состоящие из многих мелких сросшихся кристаллов (в клетках корневищ, коры, корки, черешков и эпидермы многих растений). Рафиды - игольчатые кристаллы, соединенные в пучки (в корневищах купены, стебле винограда). Кристаллический песок - скопление множества мелких одиночных кристаллов (в чешуе лука, стебле бузины). Как правило, друзы встречаются у двудольных растений, а рафиды - у однодольных. Встречаются одиночные кристаллы более простых и сложных комбинационных форм. Кристаллы, имеющие форму сильно вытянутых призм, называют стилоидами. Стилоиды находятся в клетках по одному. Обычно они покрыты очень тонкой оболочкой. Клетки с кристаллами расположены среди клеток мезофилла или образуют кристаллоносную обкладку вокруг проводящих пучков или группы волокон.

Кристаллы кальция оксалата:

а—одиночные; б— друзы; в—рафиды; г—стилоид; д—кристаллический песок;

е — кристаллоносная обкладка проводящих или механических тканей

К кристаллическим включениям очень близки цистолиты (греч. китос - пузырь, или мешок, литос - камень). Они чаще всего состоят из карбоната кальция или кремнезема и представляют собой гроздевидные образования внутри клеток, возникшие на выступах клеточной оболочки (фикус, крапивные, тутовые).

Включения имеют определенную форму и хорошо видны в световой микроскоп. По наличию тех или иных включений, их форме и распределению можно отличить одни виды, роды и семейства растений от других, поэтому они часто служат важным диагностическим признаком при анализе лекарственного растительного сырья.

21. Строение и функции выделительных тканей эндогенного про­исхождения

Секреторная ткань, или Выделительная ткань — вид ткани в растительном организме, участвующих в секреции веществ.

В зависимости от конечного расположения секретируемых веществ их делят на две группы:

  • ткани внутренней секреции (эндогенные структуры) — выделенные вещества остаются внутри растения;

  • ткани наружной, или внешней секреции (экзогенные структуры) — выделяют секреты наружу.

Эндогенные структуры являются производными основной меристемы[2].

  • идиобласты (в том числе кристаллоносные клетки, содержащие цистолиты и рафиды)

  • слизевые ходы, или секреторные вместилища, или вместилища выделений (в том числе смоляные каналы)

  • млечники

Млечники, или млечные сосуды, встречаются у разных жизненных форм растений: деревьев, кустарников, лиан, трав. Они образуются живыми клетками, у которых цитоплазма с многочисленными ядрами занимает пристенное положение, а в центре располагается крупная вакуоль, заполненная млечным соком. Как и в ситовидных трубках, в млечниках часто разрушается тонопласт. Поэтому между цитоплазмой и вакуолью нет четкой границы.

Млечный сок может быть молочно-белым (одуванчик) или окрашенным в желто-коричневый (конопля), или красно-оранжевый цвет (чистотел). В состав млечного сока входят вода, углеводы, органические кислоты, белок, алкалоиды, эфирные масла, смолы, слизи, каучук и каротиноиды. 

ТИПЫ МЛЕЧНИКОВ

Нечленистый Членистый

млечник млечник По строению млечники бывают простыми (нечленистыми) и сложными (членистыми). Простые млечники образуются из одной крупной клетки, которая возникает в зародыше семени. По мере роста растения эта клетка разрастается не делясь и проникает во все органы растений. Она имеет множество ядер. Неветвящиеся простые млечники встречаются у крапивы и конопли, а ветвящиеся – у молочая и шелковицы.  У некоторых растений в млечниках могут запасаться питательные вещества. У молочая – крахмал, фикуса – белки, цикория – сахара. Млечный сок тропического дынного дерева папайи содержит сахара, жиры, ферменты. Сложные (членистые) млечники встречаются у астровых, колокольчиковых, маковых. Они состоят из отдельных члеников, т.е. живых клеток, у которых разрушаются поперечные клеточные стенки. В результате их протопласты сливаются в единую разветвлённую сеть. Такие млечники увеличиваются в длину за счёт деятельности апикальных меристем, и могут проникать в цветки и плоды. Членистые млечники вытянуты вдоль оси органов. Часто между рядом расположенными членистыми млечниками образуются анастамозы – выросты, выполняющие роль перемычек, как у латука.  Вместилища выделений весьма разнообразны по происхождению, размерам и форме. Различают лизигенные и схизогенные вместилища.  Лизигенные вместилища образуются в результате лизиса (растворения) оболочек клеток, наполненных секретом. В результате появляются полости и ходы, окруженные секретирующими клетками. Такие вместилища характерны для листьев и плодов цитрусовых. Схизогенные вместилища развиваются в молодых тканях вследствие значительного увеличения размеров межклетников. При этом образуются полости и ходы, выстланные секретирующими эпителиальными клетками. Схизогенные ходы характерны для аралиевых, астровых, миртовых, сельдерейных. У сосновых они представлены многочисленными смоляными ходами, расположенными в корнях и стволах деревьев, в иглице и шишках.  Во вместилищах накапливаются летучие терпены, вязкие бальзамы, камеди, слизи и другие вещества. Идиобласты – это обособленные клетки, которые располагаются среди клеток других тканей. Они встречаются в коре и листьях растений. Идиобласты способны накапливать слизи, танины, соли. Эфиромасляные идиобласты характерны для представителей семейств Лавровые, Магнолиевые, Перечные и др. Из щавелевокислого кальция в идиобластах образуются одиночные кристаллы, кристаллический песок, друзы, рафиды, цистолиты. Оболочки идиобластов могут пропитываться суберином, изолируя ядовитое содержимое клетки от окружающих живых тканей растения.  29. Особенности строения проводящей системы вегетативных органов одно- и двудольных растений

 Вегетативные органы (корень и побег: стебель с листьями) обеспечивают поглощение веществ из окружающей среды, синтез и запас веществ, необходимых для жизнедеятельности растения.

Проводящая система корня (ситовидные трубки и сосуды) радиально расположена в центре корня, образуя клетками основной ткани осевой цилиндр. По сосудам происходит транспорт воды с растворенными в ней веществами к наземным органам растения от корневых волосков. Между тяжами сосудов находятся ситовидное трубки. Они служат для транспортировки органических растворов от наземной части растения к клеткам корня. Между флоэмой и ксилемой расположена образовательная ткань - камбий, клетки которого непрерывно делятся, обеспечивая рост корня в толщину. Всасывание воды с растворенными в ней веществами осуществляется в зоне корневых волосков. Корневой волосок — это вырост клетки, он живет около 20 дней и заменяется новым.

Проводящая система в листе представлена сосудисто-волокнистыми коллатеральными закрытыми пучками. Характерно расположение проводящих тканей: ксилема располагается в верхней части пучков, флоэма  в нижней. Анатомическая структура листа формируется в конусе нарастания одновременно со стеблем. Покровы листа являются продолжением покрова молодого стебля, проводящая система его вливается в проводящую систему стебля.

На поперечном срезе двудольного растения (деревянистого или травянистого) выделяют три концентрические зоны: наружная кора, сосудистые пучки и центральная сердцевина, состоящая из бесцветных паренхимных клеток, где запасаются питательные вещества. Самый наружный слой клеток стебля - эпидермис, клетки которого утолщены и содержат кутин. Под ним лежит слой толстостенных клеток колленхимы, выполняющих механическую функцию. Далее располагается слой рыхлых тонкостенных клеток паренхимы и, наконец, за ними находятся толстостенные клетки эндодермы, примыкающие к перициклу.

У двудольного травянистого растения сходное внутреннее строение стебля, но отличие состоит в том, что слой коры тоньше, клетки паренхимы содержат хлорофилл (у деревянистых только молодые растения имеют хлорофилл), нет древесины, меньше механической ткани. Сосудистые пучки одинакового размера и располагаются строго по окружности и обязательно содержат камбий.

У однодольных травянистых растений, живущих один вегетационный период, на поперечном срезе можно видеть отсутствие слоя коры, сосудистые пучки не содержат камбия (нет вторичного утолщения стебля) и окружены механической тканью. Такие сосудистые пучки называются закрытыми. Пучки различных размеров хаотично разбросаны по стеблю. Сердцевина рыхлая, быстро разрушается, образуя полость (запасания питательных веществ не происходит).

У двудольных растений имеется камбий, поэтому проводящие пучки открытые,

у однодольных растений отсутствует камбий, поэтому проводящие пучки закрытые

Типы открытых проводящих пучков

  1. коллатеральный

  2. биколлатеральный

Типы закрытых проводящих пучков

  1. концентрические:

центрофлоэмные

центроксилемные

  1. коллатеральные

  2. радиальные

В зависимости от лучей ксилемы:

у двудольных растений – диархные, триархные, тетраархные, пентаархные

у однодольных растений - полиархные – количество лучей ксилемы больше 6