
- •Часть 1. Гидравлика
- •Основные понятия и законы
- •Жидкости и их свойства
- •1.2. Скоростное поле среды в окрестности точки
- •1.3. Силы, действующие в жидкости
- •1.4. Уравнение неразрывности
- •1.5. Обобщенный закон трения
- •1.6. Уравнение движения жидкости
- •1.7. Основы теории подобия
- •1.7.1. Теоремы подобия
- •1.7.2. Соотношения между множителями подобного преобразования и получение критериев подобия
- •1.7.3. Получение критериев подобия методом масштабных преобразований
- •1.7.4. Уравнения подобия
- •Гидростатика
- •2.1. Основное уравнение гидростатики. Закон Паскаля
- •2.2. Давление жидкости на плоскую и криволинейную стенки
- •Определение силы, действующей на наклонную пластину, погруженную в жидкость
- •Давление жидкости на криволинейную поверхность
- •2.3 Основы теории плавания. Закон Архимеда
1.7.2. Соотношения между множителями подобного преобразования и получение критериев подобия
Условия гидродинамического подобия. Здесь должны быть рассмотрены условия, при которых в геометрически подобных системах осуществляются подобные движения потоков жидкости. Жидкость будем считать ньютоновской и несжимаемой.
Пусть имеются две подобные между собой системы. Все величины, относящиеся к первой из них, будем обозначать буквами без штрихов, а величины второй системы – теми же буквами со штрихом. Гидродинамические условия потока описываются уравнениями движения и сплошности Ограничиваясь рассмотрением неразрывных сред, проанализируем лишь уравнения движения потоков. Последние для простоты выкладок будем писать лишь в виде проекций сил на ось z. Тогда для первой системы
.
Для стационарных процессов, которые и
будут далее рассматриваться,
и уравнение может быть упрощено:
. (А)
Аналогично для второй системы
. (В)
Поскольку рассматриваемые процессы подобны, отношения одноименных величин в сходственных точках для них одинаковы и имеют следующие значения:
С помощью множителей подобного преобразования cl,сw,си т. д. выразим переменные второй системы через переменные первой:
Подставляя полученные значения в уравнение (В) и вынося за скобку одноименные множители подобного преобразования, получим
. (С)
Теперь уравнения движения обеих систем (А) и (С) записаны через переменные первой системы. Очевидно что из этих уравнений одноименные переменные должны быть получены одинаковыми. Это возможно только при тождественности уравнений (А) и (С). Для этого необходимо, чтобы комплексы, составленные из множителей подобного преобразования, сократились, т. е. чтобы
. (D)
Таким образом, для гидродинамически
подобных потоков множители подобного
преобразования не могут быть выбраны
произвольно, а должны находиться из
соотношений, определяемых выражением
(D). Указанные соотношения
целесообразно выразить через величины,
непосредственно входящие в уравнение
движения. Для этого рассмотрим соотношения
(D) попарно. Из равенства
комплексов (а) и (б) получим,
или
.
После подстановки значений множителей
подобного преобразования имеем
или
(idem–одно и то же).
Полученный комплекс, одинаковый для рассматриваемых подобных явлений и имеющий нулевую размерность, назван критерием Фруда:
.
При его получении сопоставлялись левая часть уравнения движения, отображающая силу инерции, и первое слагаемое правой части, отображающее силу тяжести. Соответственно критерий подобия Fr характеризует соотношение сил инерции и тяжести при вынужденном движении жидкости.
Если далее рассмотреть равенство комплексов (а) и (в) соотношения (D), то можно получить:
,
или
;
,
или
.
Комплекс
назван критерием Эйлера:
.
Анализируя его вывод из уравнения (A), можно видеть, что критерий Эйлера характеризует соотношение сил инерции и давления при вынужденном движении.
Аналогично предыдущему, рассматривая равенства (а) и (г), имеем:
(здесь и ранее под lиl'понимаются любые сходственные геометрические размеры систем).
Комплекс
назван критерием Рейнольдcа:
,
или, поскольку
,
.
Очевидно, что этот критерий характеризует соотношение сил инерции и внутреннего трения (вязкости) при вынужденном движении среды. Следовательно, при гидродинамическом подобии двух или нескольких потоков для любых сходственных точек критерии подобия Fr, Eu и Re имеют одни и те же значения.
Критерии подобия можно видоизменять,
рассматривая их совместно в целях
приведения к виду, наиболее удобному
для описания конкретных задач. Так, при
исследовании движения, вызываемого
различной плотностью отдельных частиц
жидкости без перемещения всего ее объема
внешним источником движения, скорость
потока не может быть измерена, и поэтому
критерии Fr и Re не могут быть определены.
В этом случае удобнее их так скомпоновать,
чтобы выделить новый критерий, в который
входила бы разность плотностей отдельных
частиц (слоев) жидкости, являющаяся
причиной движения, а скорость потока
была бы исключена. Для этого умножают
Fr на Re2и на относительную разность
плотностей потокагдеи0– плотности различных частиц (слоев)
жидкости:
.
Полученный безразмерный комплекс
называют критерием Архимеда.