Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

4.ГЕНЕТИКА БАКТЕРИЙ

.pdf
Скачиваний:
55
Добавлен:
09.03.2016
Размер:
276.81 Кб
Скачать

1

ГЕНЕТИКА БАКТЕРИЙ

Цель лекции: ознакомить студентов с основами генетики бактерий, с основными методами генодиагностики.

План лекции

1.Особенности организации ядерного аппарата бактерий.

2.Состав бактериального генома.

3.Изменчивость бактерий.

4.Рекомбинации у бактерий и их особенности.

5.Генодиагностика.

6.Классификация бактерий.

1.Особенности морфологической организации ядерного аппарата бактерий:

-не имеет ядерной мембраны, ядрышка; носит название нуклеоид;

-носителем генетической информации является ДНК. Если у эукариот ДНКлинейная, то у большинства бактерий - кольцевая, и одна нить фиксирована на цитоплазматической мембране. Если раскрутить ДНК, то длина её будет в сотни раз превышать длину клетки. ДНК бактерий суперспирализована.

-бактериальная клетка содержит одну хромосому, т.е. бактерии являются гаплоидными организмами.

2.Биохимические особенности.

-ДНК бактерий имеет тот же состав, что и ДНК эукариот.

-у бактерий в составе ДНК могут находиться минорные основания, наличие которых защищает ДНК от действия собственных эндонуклеаз.

-в геноме патогенных бактерий имеются участки ДНК, которые отличаются от основного генома составом Г-Ц пар нуклеотидных оснований. Эти участки ответственны за синтез факторов патогенности-острова патогенности.

-ДНК бактерий не содержит гистонов, а их роль выполняют полиамины. Бактериальный геном представлен структурами, которые способны к

автономной репликации. Таких структур две: хромосомы, в которых закодирована вся жизненно необходимая информация (в хромосоме бактерий содержится до 3 тыс. различных генов), и плазмиды.

Плазмиды - это ДНК, которые имеют кольцевую природу. Плазмиды в клетке могут находиться в одном из двух альтернативных состояний: в свободном или интегрированном с хромосомой.

В плазмидах закодирована дополнительная генетическая информация, которая не является жизненно необходимой для клетки, но наличие этой информации сообщает ей определенные селективные преимущества. В состав плазмид входят:

-структурные гены; -гены, отвечающие за собственную репликацию плазмиды.

Некоторые плазмиды имеют гены, обеспечивающие трансмиссивность плазмиды - tra-гены.

2

По кодируемому признаку различают:

-R плазмидыкодируют лекарственную устойчивость бактерий;

-F (sex) плазмиды - определяют способность клетки быть донором генетической информации;

-Col плазмида - кодирует синтез бактериоцинов;

-плазмиды, отвечающие за синтез факторов вирулентности (Ent-, Hly-)

и другие плазмиды.

В состав бактериального генома входят подвижные генетические элементы: IS-элементы (insertion sequences), транспозоны и интегроны. Они обнаружены как в составе бактериальной хромосомы, так и в составе плазмид. Их репликация – составная часть репликации хромосомы и плазмиды.

IS-элементы - короткие (2000) нуклеотидные последовательности. Отличительной особенностью IS-элементов является наличие на концах инвертированных повторов, которые узнает транспозаза. Они не несут структурных генов; одинаковы у бактерий разных видов, родов, и даже считается, что они одинаковы у прокариот и у эукариот. IS-элементы могут перемещаться как по хромосоме, так и между хромосомами. Они содержат 2 гена:1-й кодирует синтез транспозазы; этот фермент обеспечивает процесс исключения IS элемента из хромосомы и его интеграцию в новой локус хромосомы . 2-й ген кодирует синтез репрессора, который регулирует весь процесс перемещения.

Транспозоны – это сегменты ДНК, обладающие теми же свойствами, что и ISэлемент, но имеющие структурные гены.

Интегроны – подвижные генетические элементы; они содержат ген, кодирующий устойчивость к антибиотикам. Интегроны являются системой захвата малых элементов ДНК, называемых генными кассетами посредством сайтспецифической рекомбинации и их экспрессии.

Значение мобильных элементов.

Перемещаясь по ДНК клетки или между ДНК разных клеток, они вызывают:

-инактивацию генов тех участков ДНК, куда они, переместившись, встраиваются;

-повреждения генетического материала;

-встраивание плазмиды в хромосому;

-распространение гена в популяции бактерий.

Бактериям, как и всем живым существам, свойственна изменчивость. Изменчивость у эукариот происходит по вертикали, у бактерий – и по вертикали, и по горизонтали.

Различают два вида изменчивости: - фенотипическая -генотипическая.

Фенотипическая изменчивость проявляется в виде модификаций - это изменение свойств клетки под влиянием внешних воздействий.

3

Модификации могут быть длительными и кратковременными. Модификационные изменения касаются подавляющего большинства клеток популяции.

Генотипическая - это мутации или рекомбинации. Мутации могут быть спонтанными и индуцированными.

Рекомбинации - это взаимодействие между двумя геномами, обладающими различными генотипами, которое приводит к образованию генома, сочетающего гены донора и реципиента. В процессе рекомбинации бактерий условно делят на клетки-доноры, которые передают генетический материал, и клетки-реципиенты, которые его принимают. Рекомбинация у бактерий рассматриваются как аналоги полового размножения.

Особенности рекомбинаций у бактерий:

-отсутствует мейоз. Образуется не зигота, а меразигота.

-всегда направлена от донора к реципиенту.

-количество генетического материала у рекомбинанта всегда больше одного. Рекомбинант содержит всю генетическую информацию реципиента и часть

генетической информации донора.

У эукариот механизм рекомбинации один – мейоз; у бактерий различают три вида рекомбинаций:

1)трансформацияэто обмен генетической информации с помощью чистой ДНК.

2)трансдукция – этот способ переноса генетической информации с помощью фагов.

3)конъюгация – это способ передачи генетической информации, когда между двумя бактериями образуются цитоплазмические мостики. При конъюгации

в клетку-реципиент может перейти почти весь геном.

Генетические методы применяются в практических целях как для обнаружения микроба в исследуемом материале без выделения чистой культуры, так и для определения таксономического положения микроба и проведения внутривидовой идентификации.

Секвенирование генома – определение последовательности пар нуклеотидов ДНК.

Рестрикционный анализ – этот метод основан на применении ферментов рестриктаз – это эндонуклеазы, которые расщепляют молекулу ДНК только в определённых местах. Если выделенную из конкретного материала ДНК обработать определенной рестриктазой, то это приведет к образованию строго определенного количества фрагментов ДНК фиксированных размеров.

Риботипирование – позволяет определить вид бактерий. Последовательность нуклеотидных оснований в оперонах, кодирующих рРНК, характеризуется наличием как консервативных участков, которые имеют сходное строение у различных бактерий, так и вариабельных последовательностей, которые родо- и видоспецифичны и являются маркерами при генетической идентификации.

4

Молекулярная гибридизация – применяется в геносистематике. Этот метод позволяет выявить степень сходства различных ДНК.

ПЦР используется для обнаружения генов или соответствующих нуклеотидных последовательностей, кодирующих либо видовую принадлежность, либо иной признак.

Метод ПЦР основан на принципе комплементарности и позволяет увеличивать (амплифицировать) количество исследуемого образца ДНК. Этот метод обладает чрезвычайно высокой чувствительностью и теоретически позволяет обнаружить в исследуемом материале даже единичные молекулы ДНК.

Разновидности ПЦР:

-ПЦР в режиме реального времени; даёт возможность определить количество фрагментов ДНК находящегося в материале, т.е. проводить количественный анализ;

-мультиплексная ПЦР – преимущество заключается в том, что в реакционную смесь можно вводить 2 – 4 и более пары праймеров. Они характерны для различных возбудителей.

-обратнотранскрипционная ПЦР – позволяет осуществить копирование РНК возбудителей.

ДНК – чипы являются новейшими технологиями гибридизационных методов молекулярно-генетического анализа. Они представляют собой носители известных олигонуклеотидов (менее 20 оснований каждый), комлементарных участкам исследуемого генома (или геномов) и занимающих определенный сайт (ячейку). При наличии в исследуемой пробе фрагментов искомой ДНК они гибридизуются (соединяются по принципу комплементарности) с нуклеотидными последовательностями, сидящими на чипе.

Классификация бактерий.

Основной таксономической единицей у бактерий является вид. Для обозначения вида у бактерий используется двойная (бинарная) номенклатура

Вид у бактерийэто совокупность родственных бактерий, которые обладают сходными биологическими свойствами и имеют общее происхождение. В настоящее время существует 3 подхода к классификации бактерий:

1. Рутинная классификация.

Она лежит в основе определителя бактерий под редакцией Берджи.

2.Нумерическая таксономия.

3.Геносистематика.

Заключение: студенты ознакомлены с основами генетики бактерий, с основными методами генодиагностики.