
- •1. Строение прокариотической клетки
- •2.Общий план строения эукариотической животной клетки
- •3. Системы жизнеобеспечения клетки
- •4. Строение и функции цитоплазматической мембраны
- •5. Транспорт различных веществ через цитоплазматическую мембрану. Механизмы транспорта.
- •6. Строение ядра клетки и функция его основных органоидов
- •7. Строение и функции днк
- •8. Репликация днк. Ферменты репликации
- •9. Строение и функции рнк
- •10. Структура и свойства генетического кода
- •11. Особенности структурной организации гена эукариот
- •12.Свойство гена
- •13-15. Этапы экспрессии гена эукариот: претранскрипционный, транскрипция, процессинг-сплайсинг, транспорт иРнк через ядерную мембрану, трансляция, посттрансляционный
- •16. Химическая организация хромосом. Уровни компактизации днп: нуклеосомный, фибрилла, интерфазная хромосома, метафазная хромосома
- •17. Строение и функции метафазных хромосом
- •18. Кариотип и идиограмма человека. Основные показания для исследования кариотипа у человека.
- •19. Характеристика х и у хромосом человека
- •Характкристика х- и у-хроматина. Происхождение полового хроматина, и методы его определения, значение в диагностике наследственных заболеваний
- •20. Воспроизведение на клеточном уровне. Понятие о жизненном цикле клеток
- •Основные периоды жцк, утративших способность к делению
- •Основные периоды жцк клеток, способных к делению
- •21.Цитологическая характеристика периодов и фаз митотичекого цикла
- •Биологическое значение митоза
9. Строение и функции рнк
РНК состоит из нуклеотидов, в состав которых входят сахар – рибоза, фосфат и одно из азотистых оснований (аденин, урацил, гуанин, цитозин). Образует первичную, вторичную и третичную структуры аналогично таким же у ДНК. Информация о последовательности аминокислот белка содержится в информационных РНК (иРНК, мРНК). Три последовательных нуклеотида (кодон) соответствуют одной аминокислоте. В эукариотических клетках транскирибированный предшественник мРНК или пре-мРНК процессируется с образованием зрелой мРНК. Процессинг включает удаление некодирующих белок последовательностей (интронов). После этого мРНК экспортируется из ядра в цитоплазму, где к ней присоединяются рибосомы, транслирующие мРНК с помощью соединённых с аминокислотами тРНК.Транспортные (тРНК) — малые, состоящие из приблизительно 80 нуклеотидов, молекулы с консервативной третичной структурой. Они переносят специфические аминокислоты в место синтеза пептидной связи в рибосоме. Каждая тРНК содержит участок для присоединения аминокислоты и антикодон для узнавания и присоединения к кодонам мРНК. Антикодон образует водородные связи с кодоном, что помещает тРНК в положение, способствующее образованию пептидной связи между последней аминокислотой образованного пептида и аминокислотой, присоединённой к тРНК. Рибосомальные РНК (рРНК) — каталитическая составляющая рибосом. Эукариотические рибосомы содержат четыре типа молекул рРНК: 18S, 5.8S, 28S и 5S. Три из четырёх типов рРНК синтезируются в ядрышке. В цитоплазме рибосомальные РНК соединяются с рибосомальными белками и формируют нуклеопротеин, называемый рибосомой. Рибосома присоединяется к мРНК и синтезирует белок. рРНК составляет до 80 % РНК, обнаруживаемой в цитоплазме эукариотической клетки.
Функции: способность к самовоспроизведению, способность сохранять свою организацию постоянной, способность приобретать изменения и воспроизводить их.
10. Структура и свойства генетического кода
Генетический код – Определенный набор и порядок расположения аминокислот в пептидных цепях. В многообразии белков, существующих в природе, было обнаружено около 20 различных аминокислот. Для их шифровки достаточное количество сочетаний нуклеотидов может обеспечить лишь триплетный код, в котором каждая аминокислота шифруется тремя стоящими рядом нуклеотидами, из четырех нуклеотидов образуется 43 = 64 триплета. Из 64 возможных триплетов ДНК 61 кодирует различные аминокислоты; оставшиеся 3 получили название бессмысленных, или «нонсенс-триплетов». Они не шифруют аминокислот и выполняют функцию знаков препинания при считывании наследственной информации. К ним относятся АТТ, АЦТ, АТЦ.
Свойства генетического кода: вырожденность - явная избыточность кода, многие аминокислоты шифруются несколькими триплетами. Это свойство имеет очень важное значение, так как возникновение в структуре молекулы ДНК изменений по типу замены одного нуклеотида в полинуклеотидной цепи может не изменить смысла триплета. Возникшее новое сочетание из трех нуклеотидов кодирует ту же самую аминокислоту. Специфичность - каждый триплет способен кодировать только одну определенную аминокислоту. Универсальность - полное соответствие кода у различных видов живых организмов свидетельствует о единстве происхождения всего многообразия живых форм на Земле в процессе биологической эволюции. Непрерывность и неперекрываемость кодонов при считывании –последовательность нуклеотидов считывается триплет за триплетом без пропусков, при этом соседние триплеты не перекрывают друг друга, т.е. каждый отдельный нуклеотид входит в состав только одного триплета при заданной рамке считывания. Доказательством неперекрываемости генетического кода является замена только одной аминокислоты в пептиде при замене одного нуклеотида в ДНК .