Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Н.Физиология ЭКЗАМЕН билеты+ответы.doc
Скачиваний:
794
Добавлен:
08.03.2016
Размер:
1.56 Mб
Скачать

3.Процессы мочеобразования (клубочковая фильтрация, канальцевая реабсорбция, секреторная функция эпителия почечных канальцев). Состав первичной и вторичной мочи. Уровни регуляции мочеобразования.

Процесс мочеобразования.

Происходит в нефроне за счет процессов фильтрации, реабсорбции и секреции.

Нефроны различают поверхностные, интракортикальные их юкстамедуллярные. Их 1,2млн., работают не все одновременно. Это является функциональным резервом почки. Главную роль в мочеобразовательной функции почки играют корковые нефроны (от них зависит объем выводимой мочи, поэтому нарушение их функции сопровождается анурией).

Главное назначение юкстамедуллярных нефронов – создание высокого осмотического давления в мозговом слое почки.

Проксимальный извитой каналец.

Начинается от капсулы, переходят в прямой нисходящий. Цилиндрические клетки этого отдела нефрона на апикальной мембране имеют щеточную каемку из микроворсинок, покрытых гликокаликсом. Проксимальный отдел находится в корковом веществе, где и переходит в петлю Генле, опускающуюся в мозговое вещество почки на небольшую глубину. Это касается корковых нейронов. Юкстамедуллярные нефроны, их капсула и проксимальный извитой каналец располагаются в основном в наружной зоне мозгового слоя, а петля нефрона опускается глубоко во внутреннюю зону мозгового вещества почки.

Нисходящий отдел пели, покрыт плоскими клетками канальцевого эпителия. Восходящая часть петли переходит в прямой дистальный кубический эпителий, затем в извитой дистальный каналец. Кубические клетки канальцевого эпителия здесь не имеют щеточной каемки. Дистальный извитой каналец подходит к полюсу нефрона, и соприкасаются с его полюсом между приносящими и выносящими артериолами. В этом месте эпителий цилиндрический выглядит плотным и называется плотное пятно – относится к ЮГК. Дистальный извитой каналец впадает в собирательную трубку, которая спускается в мозговое вещество.

Собирательная трубка имеет цилиндрический эпителий. Клетки его содержат карбангидразу и обеспечивают секрецию Н+. Собирательные трубки сливаются в выводные протоки, затем моча собирается в чашечки, затем в лоханку, из которой идет мочеточник в мочевой пузырь.

Особенности кровоснабжения нефрона.

1) В почке самый большой кровоток на единицу массы 12,5% от МОК проходит через 2 почки, т. е. в 60 раз больше, чем в других органах.

2) Приносящая артериола в капсуле разветвляется на 30 – 50 капиллярных петель. Они соединяются между собой и выходят из капсулы в виде выносящей артериолы. Давление в капиллярах мальпигиева клубочка 70 – 90 мм. рт. ст. (в 2 раза выше чем в МЦР).

3) В корковых нефронах имеется 2 капиллярные сети: первичная в почечных клубочках, вторичная образуется разветвлением выносящей артериолы на капилляры, оплетающие извитые канальцы, петлю Генле. Функция первичной капиллярной сети обеспечивает образование первичной мочи, вторичная капиллярная сеть – реабсорбцию веществ, питание и доставку О2 к тканям почки, секрецию веществ в конечную мочу. Юкстамедуллярные нефроны не имеют вторичной капиллярной сети.

Роль почечного фильтра.

Образуется за счет:

1) прерывистой эндотелиальной выстилки капилляров и их пористости (фенестров);

2) пористой базальной мембраны;

3) отверстий между подоцитами. Фильтруются низкомолекулярные вещества, иногда альбумины, молекулярный вес которых около 70000. Некоторые чужеродные белки, мол. вес которых относительно невелик (яичный белок, желатин) проходят через почечный фильтр с мочой. Крупномолекулярные белки с молекулярным весом более 160000 не фильтруются, (например глобулины).

Состав ультрафильтрата – (первичной мочи).

1) чужеродные низкомолекулярные белки;

2) немного альбумина (затем реабсорбируется);

3) свободно фильтруются неорганические соли, мочевина, мочевая кислота, глюкоза, аминокислоты, витамины. Т. е. первичная моча похожа на плазму крови без крупномолекулярных белков.

Регуляция фильтрации.

1) Путем изменения величины движущих сил фильтрации. Так, повышение давления крови увеличивает фильтрацию. Это происходит при повышении системного АД или сужении выносящей артериолы. Увеличение объемного кровотока через почку увеличивает фильтрацию.

Снижение фильтрации вызывает:

а) сужение приносящей артериолы (действие симпатической системы через α – АР);

б) снижение системного АД;

в) повышение величины сил препятствующих фильтрации.

Канальцевая реабсорбция. Это обратное всасывание веществ и воды с 50м2 канальцевой поверхности. В результате образуется вторичная моча.

Механизм реабсорбции.

а) активная реабсорбция (первично и вторично-активный транспорт веществ);

б) пассивная.

Первично – активный механизм реабсорбции используется при переносе веществ против электрохимического, концентрационного градиентов с использованием энергии АТФ (пример: работа ионных насосов).

Вторично – активный или натрийзависимый транспорт осуществляется против концентрационного градиента с участием Na+: Схема транспорта: переносчик + Na + вещество (аминокислота, глюкоза) Энергия АТФ тратится на перенос Na, а АК или глюкоза является «попутным грузом».

Пассивный транспорт осуществляется по градиентам: - электрохимическому (например, Cl-);

-осмотическому (Н2О);

-концентрационному.

Пассивным видом транспорта является и пиноцитоз (белки).

Особенности реабсорбции воды. Из 150 – 170 л. первичной мочи за счет реабсорбции Н2О образуется ≈ 1,5л. конечной мочи.

- В проксимальном канальце Н2О реабсорбируется 40 – 50% .

- В петле Генле 25 – 28%.

- В дистальном канальце 10%.

- В собирательной трубке 20%.

Реабсорбция веществ.

Проксимальный каналец – здесь происходит обязательная (облигатная) реабсорбция всех нужных веществ: глюкоза, АК, белки, витамины, пептиды, ионы Na, К, Са, Mg, мочевина и мочевая кислота, анионы. После реабсорбции моча изотоническая.

Функция петли Генле.

Здесь изотоничность мочи нарушается вследствие работы поворотно-противоточной системы: в нисходящей части реабсорбируется Н2О, в восходящей части – Na, а вода не проходит через стенку. Это взаимозависимый процесс: выход Н2О понижает осмотическое давление паренхимы почки. Это способствует активному всасыванию Na+ из восходящей части петли, Росм. паренхимы повышается и обусловливает реабсорбцию Н2О из нисходящей части петли Генле. На вершине петли моча гипертоническая, на выходе из петли – гипотоническая или изотоническая.

Реабсорбция в дистальном отделе нефрона.

Здесь происходит факультативная реабсорбция ионов и Н2О. Объем реабсорбции меняется под влиянием различных факторов: а) от уровня ионов в крови;

б) от действия регулирующих факторов. Na+ реабсорбируется в обмен на Н+, К+. Здесь реабсорбируются Na, К, Са, фосфаты.

Реабсорбция в собирательной трубке.

Здесь реабсорбируется вода, т.к. собирательная трубка проходит через мозговой слой почки, где высокое осмотическое давление, что обеспечивает реабсорбцию воды. Этот процесс регулируется АДГ.

В юкстамедуллярных нефронах здесь пассивно реабсорбируется мочевина, которая затем вновь поступает в восходящую часть петли Генле и в мочу.

Пороговые и беспороговые вещества.

Обратное всасывание веществ зависит от их концентрации в крови. Существует понятие «порог выведения». Эта та концентрация вещества в крови, при которой реабсорбция его полностью не происходит и оно попадает в конечную мочу. Вещества, имеющие порог выведения порог выведения называются пороговыми. Он различен для разных веществ. Беспороговые вещества не реабсорбируются в почечных канальцах при любой их концентрации в крови. Это креатинин, инулин, маннитол, сульфаты.

Регуляция реабсорбции.

1) Пассивная реабсорбция зависит от величины градиентов и проницаемости мембраны канальцев.

2) Активная реабсорбция зависит от количества переносчиков и запасов АТФ. Нервнаярегуляция имеет меньшее значение, чем гуморальная. Показано, что АНС влияет на реабсорбцию глюкозы, Na, воды, фосфатов.

Гормональная регуляция.

АДГ регулирует натрийнезависимый транспорт воды, альдостерон – натрийзависимый транспорт воды.

Канальцевая секреция.

Термин имеет 2 значения:

1) процесс переноса вещества без изменения через стенку канальца из крови в просвет канальца;

2) выделение из клеток канальцев в кровь или просвет канальца синтезированных в почке БАВ (простагландины, брадикинин, ренин, эритропоэтин) или экскретируемых веществ (гиппуровая кислота, аммиак). Секреция осуществляется против электрохимического и концентрационного градиентов с затратой энергии. Процесс секреции ускоряет выведение чужеродных веществ, конечных продуктов обмена, ионов.

В проксимальном канальце секретируется:

- органические кислоты (с помощью специальных переносчиков): парааминогиппуровая кислота, йодсодержащие контрастные вещества, Н+, фенилрот, пенициллин, NH3+.

- органические основания (с помощью переносчиков): гуанидина, тиамина, серотонина, хинина, морфина.

В дистальном извитом канальце секретируются: К+, регулируется альдостероном в обмен на Na+. В собирательной трубке секретируется К+.

Регуляция секреции.

1) Нервная.

а) через изменение характера кровотока во вторичной капиллярной сети, оплетающей канальцы, и изменение доставки веществ к секретирующим клеткам эпителия;

б) через изменение количества переносчиков и обеспечение секреции, т. е. работы переносчиков энергией.

2) Гуморальная. Усиливают секрецию СТГ, тироксин, андрогены, альдостерон.

Состав конечной мочи.

Удельный вес 1005 – 1025.

рН – слабокислая, но зависит от питания.

При питании растительной пищей моча щелочная, мясной – кислая.

Мочевины за сутки выводится 25 – 35 г.

Азота 0,4 – 1,2 г.

Мочевой кислоты – 0,7 г.

Креатинина – 1,5 г.

Содержание К, сульфатов, фосфатов в моче больше чем в крови.

В небольших количествах содержатся продукты гниения в соединении с H2SO4.

Глюкоза и белки в норме отсутствуют.

Пигменты: уробилин, урохром.

БАВ и гормоны: эстрогены, АДГ, катехоламины, витамин С, ферменты (амилаза, липаза, трансаминаза).

Припатологии содержится ацетон, желчные кислоты, белок, глюкоза.

  1. Методы определения систолического и минутного объема крови

Билет 34

  1. Рейтинг жизненных ценностей человека. Факторы риска здоровья

  1. Эритропоэз, его регуляция (роль лимфокинов, эритропоэтинов, витаминов)

Эритропоэз

Гемоцитопоэз и эритропоэз происходит в миелоидной ткани. Развитие всех форменных элементов идет из полипотентной стволовой клетки.

КПЛ → СК → КОЕ ─ГЭММ

↓ ↓

КПТ-л КПВ-л Н Э Б

Факторы, влияющие на дифференцировку стволовой клетки.

1. Лимфокины. Выделяются лейкоцитами. Много лимфокинов – снижение дифференцировки в сторону эритроидного ряда. Снижение содержания лимфокинов – повышение образования эритроцитов.

2.Главным стимулятором эритропоэза является содержание кислорода в крови. Снижение содержания О2 , хронический дефицит О2 являются системообразующим фактором, который воспринимается хеморецепторами центральными и периферическими. Имеет значение хеморецептор юкстагломерулярного комплекса почки (ЮГКП). Он стимулирует образование эритропоэтина, который увеличивает:

1)дифференцировку стволовой клетки.

2)ускоряет созревание эритроцитов.

3)ускоряет выход эритроцитов из депо костного мозга

В этом случае возникает истинный (абсолютный) эритроцитоз. Количество эритроцитов в организме увеличивается .

Ложный эритроцитоз возникает при временном снижении кислорода в крови

( например, при физической работе). В этом случае эритроциты выходят из депо и их количество растет только в единице объема крови но не в организме.

Эритропоэз

Образование эритроцитов протекает при взаимодействии эритроидных клеток с макрофагами костного мозга. Эти клеточные ассоциации получили название эритробластических островков (ЭО).

Макрофаги ЭО влияют на пролиферацию и созревание эритроцитов путем:

1) фагоцитоза вытолкнутых клеткой ядер;

2) поступления из макрофага в эритробласты ферритина и других пластических материалов;

3) секреции эритропоэтинактивных веществ;

4) создания благоприятных условий для развития эритробластов.

Образование эритроцитов

В сутки образуется 200 – 250 млрд. эритроцитов

(КОЕ – Э)

проэритробласт (удвоение).

2

базофильные

базофильных эритробластаI порядка.

4 базофильных ЭБ II порядка.

8полихроматфильных эритробластаI порядка.

полихроматофильные

16 полихроматофильных эритробласта II порядка.

32 ПХФ нормобластов.

3

оксифильные

2 оксифильных нормобласта, выталкивание ядра.

32 ретикулоцита.

32 эритроцита.

Факторы, необходимые для образования эритроцита.

1) Железонужно для синтеза гемма. 95% суточной потребности получает организм из разрушающихся эритроцитов. Ежесуточно требуется 20 – 25 мг Fe.

Депо железа.

1) Ферритин – в макрофагах в печени, слизистой кишечника.

2) Гемосидерин – в костном мозге, печени, селезенке.

Железо доставляется к эритробластам в комплексе с белком плазмы – трансферрином.

В ЖКТ железо лучше всасывается в 2х валентном состоянии. Это состояние поддерживает аскорбиновая кислота, фруктоза, АК – цистеин, метионин.

Железо, входящее в состав гемма (в мясных продуктах, кровяных колбасах) лучше всасывается в кишечнике, чем железо из растительных продуктов.1мкг всасывается ежедневно.

Роль витаминов.

В12– внешний фактор кроветворения (для синтеза нуклеопротеидов, созревания и деления ядер клеток).

При дефиците В12 образуются мегалобласты, из них мегалоциты с коротким сроком жизни. Результат – анемия. Причина В12 – дефицита – отсутствие внутреннего фактора Кастла (гликопротеин, связывающий В12, предохраняет В12 от расщепления пищеварительными ферментами). Дефицит фактора Кастла связан с атрофией слизистой желудка, особенно у стариков. Запасы В12 на 1 – 5 лет, но его истощение приводит к заболеванию.

В12 содержится в печени, почках, яйцах. Суточная потребность 5мкг.

Фолиевая кислотаДНК, глобин (поддерживает синтез ДНК в клетках костного мозга и синтез глобина).

Недостаток В9 – анемия связанная с ускоренным разрушением эритроцитов.

Содержится в овощах (шпинат), дрожжах, молоке.

В6 – пиридоксин – для образования гемма.

В2 – для образования стромы, дефицит вызывает анемию гипорегенеративного типа.

Пантотеновая кислота– синтез фосфолипидов.

Витамин С – поддерживает основные этапы эритропоэза: метаболизм фолиевой кислоты, железа, (синтез гемма).

Витамин Е – защищает фосфолипиды мембраны эритроцита от перекисного окисления, усиливающего гемолиз эритроцитов.

РР – тоже.

МикроэлементыNi, Со, селен сотрудничает с витамином Е, Zn – 75% его находится в эритроцитах в составе карбоангидразы.

Анемия:

1) вследствие снижения числа эритроцитов;

2) снижение содержания гемоглобина;

3) обе причины вместе.

Стимуляция эритропоэза происходит под влиянием АКТГ, глюкокортикоидов, ТТГ,

катехоламинов через β – АР, андрогенов, простагландинов (ПГЕ, ПГЕ2), симпатической системы.

Тормозит ингибитор эритропоэза при беременности.

  1. Физиологические свойства сердечной мышцы, проведение возбуждения в сердце, скорость проведения по ЭКГ, нарушение проведения

Характеристика возбудимости.

Возбудимость – это способность отвечать на раздражение генерацией ПД.

Возбудимость связывают с наличием ионных каналов в мембране кардиомиоцитов, с избирательной проницаемостью мембраны.

Возбудимость сердечной мышцы зависит:

1) от величины ПП;

2) от величины Екр.;

Потенциал покоя это разность потенциалов между наружной и внутренней средой клетки. В различных клетках сердца он различен:

1) в кардиомиоците – 90 мв. и почти целиком зависит от концентрационного градиента – для К+, поддерживается работой Na – K насоса;

2) в клетках водителя ритма он ниже и во время диастолы, спонтанно снижается – т. е. медленная диастолическая деполяризация.

Потенциал действия, зарегистрированный в различных частях сердца имеет разную форму, различную ионную природу и разную причину возникновения.

Потенциал действия кардиомиоцита желудочка – это платообразный потенциал, в норме возникает при поступлении к мышце желудочков стимула от сино-атриального узла. Обеспечивается быстрыми и медленными ионными каналами. Развивается при деполяризации мембраны до 60мв.

Фазы потенциала действия:

1) быстрая деполяризация - ↓ Na;

2) во время деполяризации открываются Na – Са2+ медленные каналы, начинается медленная реполяризация плато;

3) быстрая реполяризация связана с открытием каналов для К+.

Изменение возбудимости при возбуждении.

Длительность ПД – 0,3сек;

абсолютная рефр. – 0,27сек;

относительная рефр. – 0,03сек.

Значение – не возникает суммации сокращений.

ПД пейсмекера возникает спонтанно, отражает свойство – автоматию.

Ионный механизм МДД.

Полностью не ясен, известно, что ведущая роль принадлежит Са2+, но каналы проницаемы и для Na. Это медленные каналы.

Понятие об автоматии.

Это способность возбуждаться под влиянием импульсов возникающих в нем самом.

В сердце есть 4 водителя ритма.

I порядка – сино – атриальный узел, в устье полых вен, ЧСС – 60 – 80 ударов в минуту.

II порядка – атрио – вентрикулярный узел – 40 – 50 ударов в минуту.

III порядка – ножки пучка Гисса – 30 – 40 ударов в минуту.

IV порядка – волокна Пуркинье – 20 ударов в минуту.

Снижение способности к автоматии от основания к верхушке называется убывающим градиентом автоматии.

От положения водителя ритма зависит ЧСС.

Нарушение автоматии.

В норме – 60 – 80 уд/мин. (у новорожденных до 140).

Патология – синусовая тахикардия 90 100 уд/мин.

синусовая брадикардия 40 – 50 уд/мин. (у спортсменов это норма)

Отсутствие ритма:

1) трепетание 200 – 300 уд/мин.

2) мерцание 500 – 600 уд/мин. дефибриллятор – мощный разряд до 1000в.

Экстрасистолы – внеочередное возбуждение.

1) синусовая – появление нового очага возбуждения, лежащего вне синусового узла. Такие очаги называются эктопическими. Различают предсердную и желудочковую экстрасистолию. Причина – нарушение метаболизма в сердце.

Проводимость.

Характеризуется способностью проведения возбуждения в сердце.

Существует проводящая система сердца.

Элементы проводящей системы.

1) синоатриальный узел → мышца правого → левого предсердия по пучкам Венкебаха, Бахмана, Торреля к желудочкам. V = 0,8 – 1м/с.

2) далее возбуждение переходит на АВ. узел. V = 0,05м/с. – атриовентральная задержка для правильного чередования сокращений предсердий и желудочков.

3) общая ножка пучка Гиса и левая и правая – 4м/с.

4) по рабочему миокарду – 1м/с.

Биоэлектрические явления в целом сердце.

Возбудимость, проводимость и автоматию можно оценить по ЭКГ – суммарная электрическая активность сердца.

Электрокардиография – метод регистрации биопотенциалов в целом сердце.

ЭКГ и пути распространения возбуждения в сердце.

ЭКГ – запись колебаний разности потенциалов, возникающих на поверхности сердца или окружающей его проводящей среде при распространении возбуждения по сердцу.

Невозбужденный участок сердца – «+» возбужденный „-”. Силовые линии распределены вдоль тела. В зависимости от положения сердца и положения электродов вид ЭКГ будет различный: по форме и амплитуде зубцов.

Параметры ЭКГ в норме. Интервалы в секундах:

Р = 0,06 – 0,11

РQ – 0,12 – 0,20

QRS – 0,06 – 0,1

ST – 0 – 0,15

Т – 0,05 – 0,25

QT – 0,27 – 0,55

R – R – 0,8

Амплитуда зубцов в милливольтах:

Р – 0,1 – 0,2

Q – 0,3

R – 1,0 – 2,0

S – 0 – 0,06

Т – 0,2 – 0,6

Возможные нарушения автоматии.

1)В норме – дыхательная аритмия, на вдохе R – R короче, на выдохе длиннее.

2) Смена водителя ритма.

3) Экстрасистолы – внеочередное сокращение. Причины:

а) внеочередное возбуждение синусового узла;

б) пробуждение других желудочковых водителей ритма. При этом появляется компенсаторная пауза.

Новые очаги возбуждения, лежащие вне синусового узла, , называются эктопическими

4) Отсутствие ритма:

а) трепетание – асинхронность сокращений волокон миокарда (частота – 400).

б) мерцание – число сокращений до 1000.

Оказание помощи:

1) массаж прямой или непрямой – при отсутствии автоматии;

2) при отсутствии ритма – дефибрилляция.

Нарушение проводимости.

1) Атриовентрикулярные блокады.

Неполная – различают различные варианты неполной блокады, т. е. выпадает каждый 5, 4, 3 и так далее импульс.

Полная блокада. В этом случае полностью нарушается проведение возбуждения.

Предсердия и желудочки работают каждый в своем ритме.

Коррекция нарушения проводимости.

1) Использование кардиостимулятора.

2) Лекарства, воздействующие на миокард, проводящую систему.

  1. Методы изучения слюноотделения у человека. Мастикациография.

Билет №35

  1. Функциональная характеристика слухового анализатора. (Характеристика воспринимаемой тональности и громкости звука), значимость отделов слуховой системы (наружное, среднее, внутреннее ухо)

Слуховой анализатор.

Это совокупность образований, обеспечивающих восприятие и анализ звуковых раздражителей.

Характеристика звука.

Звуковая волна имеет 2 характеристики: частота и амплитуда. Звуки можно разделить на тоны и шумы.

Тоны содержат звуки одной частоты. Частота – это количество колебаний в секунду. Ухо воспринимает звуки от 16 до 20000гц. Этот диапазон соответствует 10 – 11 октавам. Верхняя граница воспринимаемых звуков зависит от возраста, чем человек старше, тем она ниже: старики часто не слышат высоких тонов. В области звуковых колебаний от 1000 до 4000 в секунду ухо человека обладает максимальной чувствительностью.

Тембр – это характеристика звука, определяется формой звуковой волны.

Громкость – интенсивность звука. От объективной интенсивности звука, измеряемой в эрг/см2 · сек. следует отличать субъективное ощущение громкости звука. Единицей громкости звука является белл.

Пороговая интенсивность звука и нарастание ощущения громкости при его усилении различны в зависимости от высоты звука.

Шум – звук, состоящий из несвязанных между собой частот. 70% неврозов вызывает шум.

Значимость отделов слуховой системы.

Звуковые волны направляются в слуховую систему через наружное ухо к барабанной перепонке. Ушная раковина – это улавливатель эвука, резонатор.

Барабанная перепонка – мембрана, воспринимающая звуковое давление и передающая его к косточкам среднего уха. Перепонка не имеет собственного периода колебаний, т.к. ее волокна имеют разное направление. Поэтому она не искажает звук. Колебания мембраны могут быть ограничены musculustensortimpani при очень сильных звуках.

Среднее ухо.

Существенной частью среднего уха является цепь косточек – молоточек, наковальня и стремечко, которые передают колебания барабанной перепонки внутреннему уху. Рукоятка молоточка вплетена в барабанную перепонку, другая сторона молоточка передает колебания наковальне, наковальня стремечку. Колебания стремечка может быть ограничено сокращением musculusstapedius. Регуляция сокращений барабанной перепонки и стремечка осуществляется на уровне стволовых структур.

Рефлекс возникает через 10мс после действия на ухо сильных звуков.

Передача звуковой волны в наружном и среднем ухе происходит в воздушной среде. Благодаря евстахиевой трубе, соединяющей барабанную полость с носоглоткой, давление в этой полости равно атмосферному, что создает наиболее благоприятные условия для колебаний барабанной перепонки.

Внутреннее ухо.

Здесь звук переходит в жидкую среду. Образовано улиткой, находится в пирамиде височной кости.

Улитка представляет собой костный, спиральный, постепенно расширяющийся канал, образующий у человека 2,5 витка. По всей длине почти до самого конца улитки костный канал разделен двумя перепонками: более тонкой вестибулярной мембраной или мембраной Рейснера и плотной, упругой основной мембраной. На вершине улитки обе эти мембраны соединяются, и в них имеется отверстие helicotrema. 2 мембраны делят костный канал улитки на 3 хода.

1) верхний или вестибулярная лестница (от овального окна до вершины улитки).

2) нижний канал – барабанная лестница. Эти два канала сообщаются. Барабанная лестница начинается в области круглого окна.

Верхний и нижний каналы заполнены перилимфой и образуют единый канал.

3) Средний или перепончатый канал заполнен эндолимфой. Эндолимфа образуется специальным сосудистым образованием, распложенным на наружной стенке средней лестницы.

На основной мембране находится рецепторный аппарат Кортиева органа.

Восприятие интенсивности звука.

Предполагается, что сила звука кодируется путем раздражения внутреннего и наружного слоев рецепторных клеток кортиева органа. Наружные клетки имеют тонкие и длинные волоски и деформируются текториальной мембраной при более слабых звуках, чем внутренние фонорецепторы с толстыми и короткими волосками.

Возможно, что в зависимости от интенсивности звукового раздражения имеется разное соотношение числа возбужденных внутренних и наружных фонорецепторов.

  1. Функция гладких мышц (электрофизиологические явления, функциональные единицы, особенности распространения возбуждения), виды сокращений.

Гладкомышечные клетки (ГМК) в составе гладких мышц формируют мышечную стенку полых и трубчатых органов, контролируя их моторику и величину просвета. Регуляцию сократительной активности ГМК осуществляют двигательная вегетативная иннервация и множество гуморальных факторов. В ГМК отсутствуетпоперечнаяисчерченность, т.к. миофиламенты — тонкие (актиновые) и толстые (миозиновые) нити — не образуют характерных для поперечно-полосатой мышечной ткани миофибрилл. Заострёнными концами ГМК вклиниваются между соседними клетками и образуют мышечныепучки, в свою очередь формирующие слоигладкоймускулатуры. Встречаются и единичные ГМК (например, в субэндотелиальном слое сосудов).

Сократительныйаппарат. Стабильные актиновые нити ориентированы преимущественно по продольной оси ГМК и прикрепляются к плотным тельцам. Сборку толстых (миозиновых) нитей и взаимодействие актиновых и миозиновых нитей активируют ионы Ca2+, поступающие из кальциевых депо — саркоплазматического ретикулума. Непременные компоненты сократительного аппарата — кальмодулин (Ca2+–связывающий белок), киназа и фосфатазалёгкойцепимиозина гладкомышечного типа.

Особенности нервных влияний. Особенностью иннервации скелетной мускулатуры является наличие так называемых двигательных единиц. Двигательная единица (моторная единица) включает в себя один мотонейрон вместе с группой иннервируемых мышечных волокон (от10 до 2000). Мотонейроны составляют ядра или часть ядер ЧМН или расположены в передних рогах спинного мозга.

3) Функционирование моторных единиц.

а) Из нейрона двигательной единицы к иннервируемым мышечным волокнам импульс приходит одновременно.

б) Обычно разные нейроны, составляющие нервные центры, посылают импульсы на периферию не одновременно, и возникшая асинхронность работы моторных единиц обеспечивают слитный характер сокращения мышц.

4) Электрофизиологические явления.

Потенциал покоя скелетных мышц равен 60 – 90мВ и обусловлен концентрационным градиентом, в основном ионов К+ стремящихся покинуть клетку. К – Na – зависимая АТФ-аза, используя энергию АТФ, обеспечивает постоянную закачку в клетку К+ и удаление Na+.

Потенциалдействия мышечных волокон составляет 110 – 120 мВ, продолжительность его фаз 1 – 3 мс (в мышцах конечностей и туловища). Величина следовых потенциалов колеблется в пределах 15 мВ, продолжительность около 4 мс. Форма потенциала действия – пикообразная.

5) Биоэлектрические явления и функциональное состояние.

Функциональное состояние мышц, критерием которого является возбудимость, изменяется:

а) во время развития потенциала действия;

б) при изменении поляризации мембраны.

2.2 Гладкая мускулатура.

1) Функции гладких мышц:

а) регулируют величину просвета полых органов, бронхов, сосудов;

б) перемещают содержимое с помощью волны сокращения и изменения тонуса сфинктеров.

2) Электрофизиологические явления.

Потенциал покоя гладкомышечных волокон, не обладающих автоматией, равен 60 – 70 мВ, обладающих автоматией – колеблется от 30 до 70 мВ. Более низкая величина потенциала покоя по сравнению по сравнению с поперечно-полосатой мышцей объясняется тем, что мембрана гладкого мышечного волокна более проницаема для ионов натрия.

Потенциал действия. При возбуждении в гладких мышцах могут генерироваться два вида потенциала действия:

а) пикообразный;

б) платообразный.

Длительность пикообразных потенциалов действия 5–80 мс, платообразных – 90–500 мс.

Ионный механизм потенциала действия гладких мышц отличается от таково у поперечно-полосатых. Деполяризация мембраны гладко-мышечного волокна связана с активизацией медленных злектровозбудимых кальциевых каналов, проницаемых для натрия. Кальциевые каналы являются медленными, т. е. имеют длительный латентный период активизации и инактивации.

3) Функциональные единицы.

Функциональной единицей гладкомышечной ткани является пучок волокон диаметром не менее 100 мкм. Клетки пучка соединены плотными контактами или межклеточными мостиками. Данные обстоятельства приводят к тому, что деятельность участка гладкомышечной ткани складывается из активности функциональных единиц.

4) Особенности распространения возбуждения.

Возбуждение распространяется двумя способами:

а) путем локальных токов, как в нервном волокне и волокнах поперечно-полосатой мышцы;

б) через некрусы на соседние мышечные волокна (как в сердечной мышце), поскольку в гладкой мышце существует функциональный синцитий.

5) Виды сократительной активности, связанные с функционированием каналов.

Тонические сокращения. Проявляются в виде базального тонуса и его изменений. Наиболее выражено это в сфинктерах. Обеспечивается путем включения хемочувствительных каналов для ионов Са++, Na+.

Ритмические (фазные) сокращения. Проявляются в виде периодической деятельности. Запуск фазного сокращения осуществляется потенциалом действия и включением быстрых потенциалзависимых Са++ и Na+ каналов с последующим включением медленных потенциалзависимых каналов.

В условиях естественной активности обычно наблюдается сочетание тонического и фазного компонентов, связано это с включением вышесказанных трех видов каналов. Торможение активности мышц обусловлено снижением уровня ионизированного кальция в клетке.

6) Автоматия гладких мышц и ее регуляция.

Для гладких мышц характерна автоматия или спонтанная активность, причина которой – ритмические колебания мембранного потенциала. Так в ЖКТ выделяют несколько участков, выполняющих функции водителя ритма – пейсмекеров (в желудке, в ДПК, подвздошной кишке). С пейсмекерной деятельностью гладких мышц сосудистой стенки связывают периодическое расширение и сужение просвета микрососудов.

Функционирование пейсмекера.

Спонтанная активность зависит от колебаний концентрации Са++ и цАМФ в миоцитах пейсмекера. Этапность событий:

а) увеличение свободного кальция в миоците приводит к генерации потенциала действия;

б) активируется аденилатциклаза и нарастает в клетке концентрация цАМФ и кальций связывается внутриклеточными депо или удаляется из клетки;

Таким образом, концентрация цАМФ – это кальциевый осциллятор или ритмозадающий фактор, в итоге наблюдается тот или иной уровень тонического напряжения (сокращения) и медленные движения. В большинстве случаев, но не всегда это связывают с изменением активности метасимпатической нервной системы.

Регулирующее влияние на пейсмекер заключается в регуляции скорости изменения концентрации цАМФ, а отсюда работа кальциевого механизма.

1) Это осуществляется за счет действия БАВ на метасимпатическую систему или непосредственно на пейсмекер клетки.

2) Влияния БАВ и активность метасимпатической системы дополняются и функционированием двух отделов АНС, максимум активности гладких мышц или снижение ее наблюдается при частоте приходящих импульсов до 12 в секунду:

а) обычно парасимпатическая нервная система оказывает возбуждающий эффект на гладкие мышцы, но расслабляет гладкие мышцы сосудов;

б) симпатическая нервная система обычно тормозит активность гладких мышц, но возбуждает гладкие мышцы сосудов;

3) Механизм сокращения и расслабления мышц (ввиду изученности вопроса разбирается на примере скелетных мышц).

  1. Лимфообразование, движение лимфы. Функции лимфатической системы

Лимфатическая система выполняет ту же функцию, что и венозная: возвращает к сердцу жидкость, но из межклеточных пространств.

Лимфатическая система (ЛС) соединяет межклеточное пространство с кровеносной системой.

ЛС начинается слепыми капиллярами с крупными межэндотелиальными щелями. Капилляры сливаясь, образуют все более крупные сосуды, имеющие гладкие мышцы и клапаны. Заканчиваются ЛС грудным и шейным протоками.

Особая роль принадлежит лимфатическим узлам.

Лимфа – образуется в результате всасывания тканевой жидкости в лимфатические капилляры.

Причины образования лимфы.

1) Образование лимфы зависит от функционального состояния кровеносной системы, особенно венозной. Так, в результате сужения посткапиллярных вен капиллярное давление повышается (гидростатическое давление), способствуя увеличению фильтрации и образованию лимфы.

2) Образование лимфы зависит от площади функционирующих капилляров, т. е. от площади фильтрации. Например, при мышечной, особенно при ритмической работе, увеличивается микроциркуляторное русло, что ведет к повышению образования лимфы.

3) На образование лимфы влияет величина артериального давления. При его повышении фильтрация в МЦР растет и увеличивается лимфообразование.

Движение лимфы.

1) Обеспечивается наличием фазных и тонических миоцитов в лимфангионах. Лимфоангион образован мышечной манжеткой и клапанным аппаратом. Его работа оценивается систолическим минутным объемом лимфы.

Пейсмекер лимфангиона расположен в дистальном отделе. Возбуждается в ответ на изменение внутрисосудистого давления или действие химических веществ. Частота возбуждений 6 – 9 в минуту.

Вызванные влияния могут быть возбуждающими и тормозными и приводят к изменению емкостной функции отделов лимфатической системы и минутного объема лимфооттока.

1) Движению лимфы помогают скелетные мышцы.

2) Приспосабливающее действие грудной клетки. Во время вдоха приток лимфы увеличивается.

Значение лимфатической системы.

1) Лимфа выполняет барьерную функцию: более 400 лимфатических узлов задерживают биологические и небиологические вещества.

2) Гемопоэтическая функция. Ее выполняют лимфатические узлы и лимфатические фолликулы пищеварительного тракта (образование лимфоцитов).

3) Иммунологическая функция связана с выработкой антител плазматическими клетками и фагоцитарной активностью содержащихся лейкоцитов – ретикулярных клеток.

Таким образом, барьерная функция лимфы дополняется реакциями клеточного и гуморального иммунитета в самой лимфатической системе.