bludova_t_v_praktikum_z_vishoi_matematiki
.pdfЗакінчення табл. 1.6
Номер |
А11 |
А12 |
А13 |
А21 |
А22 |
А23 |
А31 |
А32 |
А33 |
варіанта |
|||||||||
|
|
|
|
|
|
|
|
|
|
79 |
13 |
1 |
1 |
1 |
31 |
13 |
1 |
13 |
21 |
|
|
|
|
|
|
|
|
|
|
80 |
13 |
1 |
1 |
1 |
21 |
13 |
1 |
13 |
31 |
|
|
|
|
|
|
|
|
|
|
81 |
14 |
1 |
1 |
1 |
32 |
13 |
1 |
13 |
22 |
|
|
|
|
|
|
|
|
|
|
82 |
14 |
1 |
1 |
1 |
22 |
13 |
1 |
13 |
32 |
|
|
|
|
|
|
|
|
|
|
83 |
15 |
1 |
1 |
1 |
33 |
13 |
1 |
13 |
23 |
|
|
|
|
|
|
|
|
|
|
84 |
15 |
1 |
1 |
1 |
23 |
13 |
1 |
13 |
33 |
|
|
|
|
|
|
|
|
|
|
85 |
2 |
1 |
1 |
1 |
34 |
25 |
1 |
25 |
20 |
|
|
|
|
|
|
|
|
|
|
86 |
2 |
1 |
1 |
1 |
20 |
25 |
1 |
25 |
34 |
|
|
|
|
|
|
|
|
|
|
87 |
3 |
1 |
1 |
1 |
35 |
25 |
1 |
25 |
21 |
|
|
|
|
|
|
|
|
|
|
88 |
3 |
1 |
1 |
1 |
21 |
25 |
1 |
25 |
35 |
|
|
|
|
|
|
|
|
|
|
89 |
4 |
1 |
1 |
1 |
36 |
25 |
1 |
25 |
22 |
|
|
|
|
|
|
|
|
|
|
90 |
4 |
1 |
1 |
1 |
22 |
25 |
1 |
25 |
36 |
|
|
|
|
|
|
|
|
|
|
91 |
5 |
1 |
1 |
1 |
37 |
25 |
1 |
25 |
23 |
|
|
|
|
|
|
|
|
|
|
92 |
5 |
1 |
1 |
1 |
23 |
25 |
1 |
25 |
37 |
|
|
|
|
|
|
|
|
|
|
93 |
6 |
1 |
1 |
1 |
38 |
25 |
1 |
25 |
24 |
|
|
|
|
|
|
|
|
|
|
94 |
6 |
1 |
1 |
1 |
24 |
25 |
1 |
25 |
38 |
|
|
|
|
|
|
|
|
|
|
95 |
7 |
1 |
1 |
1 |
39 |
25 |
1 |
25 |
25 |
|
|
|
|
|
|
|
|
|
|
96 |
7 |
1 |
1 |
1 |
25 |
25 |
1 |
25 |
39 |
|
|
|
|
|
|
|
|
|
|
97 |
8 |
1 |
1 |
1 |
40 |
25 |
1 |
25 |
26 |
|
|
|
|
|
|
|
|
|
|
98 |
8 |
1 |
1 |
1 |
26 |
25 |
1 |
25 |
40 |
|
|
|
|
|
|
|
|
|
|
99 |
9 |
1 |
1 |
1 |
41 |
25 |
1 |
25 |
27 |
|
|
|
|
|
|
|
|
|
|
100 |
9 |
1 |
1 |
1 |
27 |
25 |
1 |
25 |
41 |
|
|
|
|
|
|
|
|
|
|
|
a |
a |
a |
a |
|
||
|
11 |
12 |
13 |
14 |
|
||
Задача 1.7. Знайти ранг матриці |
a21 |
a22 |
a23 |
a24 |
|
||
a |
a |
a |
|
a |
|
|
|
|
31 |
32 |
|
33 |
|
34 |
|
|
|
a42 |
a43 |
|
|
|
|
|
a41 |
a44 |
|||||
за даними табл. 1.7.
30
Таблиця 1.7
Номер |
а11 |
а12 |
а13 |
а14 |
а21 |
а22 |
а23 |
а24 |
а31 |
а32 |
а33 |
а34 |
а41 |
а42 |
а43 |
а44 |
варіанта |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
5 |
– 5 |
– 1 |
9 |
1 |
6 |
2 |
7 |
– 4 |
3 |
– 1 |
– 2 |
3 |
6 |
– 1 |
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
– 3 |
3 |
– 15 |
12 |
– 1 |
2 |
– 7 |
8 |
2 |
– 1 |
8 |
– 4 |
– 1 |
– 5 |
7 |
– 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
3 |
– 2 |
4 |
– 11 |
2 |
2 |
– 1 |
14 |
– 3 |
3 |
– 6 |
21 |
– 3 |
3 |
5 |
– 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
1 |
– 5 |
13 |
– 20 |
– 2 |
4 |
– 14 |
16 |
1 |
1 |
1 |
4 |
– 2 |
0 |
– 6 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
5 |
4 |
7 |
16 |
5 |
– 7 |
– 6 |
7 |
4 |
4 |
6 |
14 |
3 |
0 |
2 |
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
– 2 |
1 |
– 8 |
4 |
1 |
– 1 |
5 |
– 4 |
1 |
3 |
– 3 |
12 |
3 |
5 |
– 1 |
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
– 4 |
– 1 |
3 |
– 17 |
– 1 |
6 |
– 7 |
16 |
2 |
– 6 |
2 |
– 8 |
5 |
7 |
– 4 |
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
– 1 |
– 3 |
3 |
– 12 |
– 2 |
1 |
– 8 |
4 |
– 2 |
4 |
– 14 |
16 |
0 |
– 1 |
2 |
– 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
2 |
– 6 |
– 7 |
1 |
4 |
5 |
0 |
22 |
0 |
7 |
5 |
9 |
– 1 |
6 |
– 5 |
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
0 |
3 |
– 6 |
12 |
2 |
– 5 |
16 |
– 20 |
– 3 |
0 |
– 9 |
0 |
– 3 |
5 |
– 19 |
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
2 |
0 |
– 5 |
11 |
– 1 |
2 |
7 |
– 6 |
– 1 |
– 1 |
5 |
– 10 |
3 |
7 |
5 |
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
0 |
– 1 |
2 |
– 4 |
2 |
5 |
– 4 |
20 |
2 |
2 |
2 |
8 |
– 1 |
5 |
– 13 |
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
– 3 |
– 4 |
5 |
– 22 |
– 2 |
– 6 |
2 |
– 20 |
– 3 |
1 |
6 |
– 13 |
0 |
5 |
3 |
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
– 3 |
– 5 |
1 |
– 20 |
3 |
– 5 |
19 |
– 20 |
0 |
1 |
– 2 |
4 |
0 |
1 |
– 2 |
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
4 |
5 |
– 7 |
29 |
– 3 |
– 1 |
– 5 |
– 6 |
– 3 |
– 2 |
– 2 |
– 11 |
– 2 |
– 4 |
– 7 |
– 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
– 3 |
5 |
– 19 |
20 |
– 2 |
4 |
– 14 |
16 |
1 |
3 |
– 3 |
12 |
0 |
– 5 |
10 |
– 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
– 1 |
– 4 |
4 |
– 15 |
– 3 |
4 |
0 |
– 1 |
1 |
2 |
– 4 |
11 |
– 2 |
1 |
2 |
– 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
– 2 |
3 |
– 12 |
12 |
– 3 |
4 |
– 17 |
16 |
– 3 |
3 |
– 15 |
12 |
2 |
– 1 |
8 |
– 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
– 5 |
3 |
– 1 |
– 8 |
– 3 |
– 7 |
4 |
– 27 |
0 |
– 3 |
– 7 |
1 |
2 |
7 |
5 |
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
– 2 |
3 |
– 12 |
12 |
3 |
– 3 |
15 |
– 12 |
0 |
5 |
– 10 |
20 |
2 |
5 |
– 4 |
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
– 5 |
– 7 |
1 |
– 30 |
– 4 |
3 |
7 |
– 13 |
2 |
3 |
– 7 |
19 |
4 |
4 |
3 |
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
– 1 |
1 |
– 5 |
4 |
3 |
3 |
3 |
12 |
2 |
4 |
– 2 |
16 |
1 |
1 |
1 |
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
3 |
5 |
– 6 |
25 |
– 4 |
– 6 |
2 |
– 26 |
– 1 |
– 3 |
– 1 |
– 8 |
5 |
– 1 |
6 |
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
– 1 |
– 5 |
7 |
– 20 |
0 |
– 2 |
4 |
– 8 |
1 |
0 |
3 |
0 |
– 3 |
– 1 |
– 7 |
– 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
0 |
– 4 |
4 |
– 12 |
– 4 |
1 |
– 6 |
– 4 |
5 |
– 4 |
3 |
4 |
– 5 |
– 6 |
– 1 |
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
2 |
1 |
4 |
4 |
2 |
– 5 |
16 |
– 20 |
2 |
– 2 |
10 |
– 8 |
3 |
0 |
9 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
1 |
0 |
– 3 |
6 |
0 |
– 5 |
– 1 |
– 9 |
2 |
– 3 |
4 |
– 4 |
– 1 |
– 4 |
– 7 |
– 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
0 |
3 |
– 6 |
12 |
0 |
– 1 |
2 |
– 4 |
0 |
1 |
– 2 |
4 |
– 1 |
1 |
– 5 |
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31
Продовження табл. 1.7
Номер |
а11 |
а12 |
а13 |
а14 |
а21 |
а22 |
а23 |
а24 |
а31 |
а32 |
а33 |
а34 |
а41 |
а42 |
а43 |
а44 |
варіанта |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
4 |
– 7 |
1 |
– 3 |
– 5 |
1 |
– 4 |
– 9 |
0 |
– 4 |
6 |
– 14 |
– 1 |
1 |
– 2 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
1 |
– 5 |
13 |
– 20 |
3 |
4 |
1 |
16 |
1 |
– 4 |
11 |
– 16 |
2 |
0 |
6 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
– 1 |
5 |
– 6 |
13 |
– 5 |
– 4 |
0 |
– 23 |
5 |
4 |
0 |
23 |
1 |
6 |
5 |
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
0 |
1 |
– 2 |
4 |
0 |
– 3 |
6 |
– 12 |
2 |
4 |
– 2 |
16 |
– 3 |
2 |
– 13 |
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
– 2 |
– 1 |
– 5 |
– 3 |
– 1 |
0 |
– 3 |
0 |
1 |
– 4 |
0 |
– 5 |
3 |
4 |
3 |
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
0 |
– 1 |
2 |
– 4 |
3 |
2 |
5 |
8 |
– 2 |
1 |
– 8 |
4 |
– 2 |
0 |
– 6 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
3 |
– 7 |
0 |
– 5 |
0 |
– 6 |
– 2 |
– 10 |
4 |
– 5 |
– 5 |
7 |
– 4 |
6 |
1 |
– 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
3 |
– 5 |
19 |
– 20 |
0 |
2 |
– 4 |
8 |
1 |
0 |
3 |
0 |
– 1 |
2 |
– 7 |
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
4 |
3 |
0 |
18 |
– 2 |
2 |
5 |
– 7 |
1 |
5 |
– 5 |
18 |
0 |
– 3 |
– 7 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
2 |
2 |
2 |
8 |
2 |
– 5 |
16 |
– 20 |
3 |
1 |
7 |
4 |
0 |
1 |
– 2 |
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
2 |
– 5 |
4 |
– 8 |
– 3 |
1 |
– 4 |
– 3 |
2 |
5 |
– 7 |
23 |
– 2 |
6 |
0 |
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
2 |
– 2 |
10 |
– 8 |
– 3 |
0 |
– 9 |
0 |
1 |
1 |
1 |
4 |
– 3 |
4 |
– 17 |
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
– 3 |
– 3 |
2 |
– 17 |
– 3 |
1 |
– 2 |
– 5 |
0 |
0 |
– 2 |
2 |
– 3 |
0 |
5 |
– 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
0 |
– 4 |
8 |
– 16 |
– 2 |
– 3 |
0 |
– 12 |
– 3 |
1 |
– 11 |
4 |
0 |
– 2 |
4 |
– 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
– 1 |
– 6 |
– 7 |
– 8 |
– 5 |
1 |
– 1 |
– 12 |
– 1 |
0 |
– 5 |
2 |
– 5 |
3 |
6 |
– 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
0 |
– 3 |
6 |
– 12 |
0 |
4 |
– 8 |
16 |
2 |
1 |
4 |
4 |
0 |
– 5 |
10 |
– 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
– 5 |
– 6 |
– 2 |
– 25 |
3 |
0 |
0 |
9 |
0 |
– 4 |
1 |
– 9 |
5 |
4 |
0 |
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
0 |
2 |
– 4 |
8 |
1 |
5 |
– 7 |
20 |
– 1 |
1 |
– 5 |
4 |
3 |
– 2 |
13 |
– 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
– 3 |
1 |
– 7 |
0 |
– 5 |
7 |
7 |
– 8 |
1 |
– 4 |
– 3 |
– 2 |
1 |
– 7 |
1 |
– 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
3 |
0 |
9 |
0 |
3 |
– 2 |
13 |
– 8 |
0 |
1 |
– 2 |
4 |
– 1 |
– 4 |
5 |
– 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
5 |
6 |
– 5 |
32 |
5 |
0 |
6 |
9 |
– 5 |
– 7 |
6 |
– 35 |
2 |
1 |
– 7 |
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
– 1 |
– 2 |
1 |
– 8 |
– 2 |
5 |
– 16 |
20 |
2 |
– 1 |
8 |
– 4 |
2 |
2 |
2 |
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
5 |
1 |
– 6 |
23 |
– 2 |
7 |
– 5 |
13 |
0 |
– 4 |
– 4 |
– 4 |
5 |
2 |
6 |
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
2 |
– 3 |
12 |
– 12 |
– 2 |
– 5 |
4 |
– 20 |
– 1 |
1 |
– 5 |
4 |
– 2 |
5 |
– 16 |
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
– 3 |
1 |
2 |
– 9 |
0 |
7 |
4 |
10 |
0 |
– 7 |
1 |
– 15 |
– 4 |
– 4 |
0 |
– 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
1 |
– 1 |
5 |
– 4 |
– 1 |
– 1 |
– 1 |
– 4 |
0 |
1 |
– 2 |
4 |
0 |
1 |
– 2 |
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
– 1 |
1 |
5 |
– 6 |
5 |
7 |
– 3 |
32 |
– 5 |
3 |
– 5 |
– 4 |
– 3 |
– 5 |
2 |
– 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32
Продовження табл. 1.7
Номер |
а11 |
а12 |
а13 |
а14 |
а21 |
а22 |
а23 |
а24 |
а31 |
а32 |
а33 |
а34 |
а41 |
а42 |
а43 |
а44 |
варіанта |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
– 3 |
2 |
– 13 |
8 |
1 |
0 |
3 |
0 |
– 1 |
2 |
– 7 |
8 |
– 1 |
– 2 |
1 |
– 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
– 4 |
– 1 |
1 |
– 15 |
– 3 |
6 |
– 3 |
6 |
5 |
7 |
– 1 |
30 |
3 |
7 |
– 4 |
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
– 3 |
1 |
– 11 |
4 |
– 2 |
1 |
– 8 |
4 |
0 |
2 |
– 4 |
8 |
0 |
– 5 |
10 |
– 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
2 |
– 1 |
4 |
0 |
2 |
6 |
2 |
16 |
4 |
3 |
6 |
12 |
– 2 |
0 |
6 |
– 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
– 1 |
– 5 |
7 |
– 20 |
0 |
3 |
– 6 |
12 |
3 |
– 2 |
13 |
– 8 |
2 |
1 |
4 |
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
– 2 |
– 2 |
– 7 |
– 3 |
3 |
– 6 |
7 |
– 10 |
– 3 |
– 6 |
3 |
– 24 |
– 5 |
– 5 |
5 |
– 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
– 1 |
– 4 |
5 |
– 16 |
– 2 |
– 4 |
2 |
– 16 |
1 |
2 |
– 1 |
8 |
1 |
4 |
– 5 |
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
– 2 |
– 4 |
0 |
– 14 |
0 |
– 5 |
7 |
– 17 |
– 5 |
2 |
– 1 |
– 10 |
– 2 |
– 6 |
– 4 |
– 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
– 3 |
0 |
– 9 |
0 |
2 |
– 3 |
12 |
– 12 |
2 |
– 2 |
10 |
– 8 |
– 2 |
– 5 |
4 |
– 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
0 |
4 |
– 4 |
12 |
– 4 |
– 5 |
– 6 |
– 16 |
– 4 |
– 6 |
5 |
– 29 |
1 |
0 |
6 |
– 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
– 3 |
5 |
– 19 |
20 |
– 3 |
4 |
– 17 |
16 |
1 |
2 |
– 1 |
8 |
– 1 |
– 1 |
– 1 |
– 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
4 |
5 |
– 7 |
29 |
3 |
– 5 |
– 5 |
4 |
4 |
– 2 |
– 2 |
10 |
1 |
1 |
0 |
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
– 3 |
3 |
– 15 |
12 |
0 |
3 |
– 6 |
12 |
– 1 |
4 |
– 11 |
16 |
– 3 |
– 2 |
– 5 |
– 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
2 |
5 |
3 |
13 |
– 1 |
– 4 |
4 |
– 15 |
– 3 |
– 6 |
6 |
– 27 |
0 |
– 3 |
2 |
– 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
– 2 |
2 |
– 10 |
8 |
1 |
4 |
– 5 |
16 |
– 3 |
4 |
– 17 |
16 |
2 |
– 4 |
14 |
– 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
2 |
7 |
4 |
16 |
4 |
– 4 |
3 |
1 |
– 5 |
– 2 |
4 |
– 23 |
– 3 |
4 |
1 |
– 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
– 1 |
5 |
– 13 |
20 |
1 |
– 1 |
5 |
– 4 |
3 |
1 |
7 |
4 |
0 |
– 2 |
4 |
– 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
– 3 |
5 |
2 |
– 1 |
4 |
– 4 |
– 2 |
6 |
2 |
– 5 |
– 7 |
3 |
– 4 |
6 |
6 |
– 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
0 |
4 |
– 8 |
16 |
1 |
– 2 |
7 |
– 8 |
1 |
1 |
1 |
4 |
3 |
– 4 |
17 |
– 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
4 |
0 |
3 |
9 |
– 1 |
– 3 |
– 2 |
– 7 |
4 |
– 2 |
5 |
3 |
1 |
7 |
5 |
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
1 |
3 |
– 3 |
12 |
0 |
4 |
– 8 |
16 |
0 |
5 |
– 10 |
20 |
1 |
– 3 |
9 |
– 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
– 5 |
0 |
2 |
– 17 |
– 4 |
– 3 |
0 |
– 18 |
3 |
– 1 |
6 |
1 |
5 |
– 2 |
2 |
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
– 2 |
4 |
– 14 |
16 |
3 |
5 |
– 1 |
20 |
2 |
– 5 |
16 |
– 20 |
1 |
– 4 |
11 |
– 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
3 |
0 |
– 6 |
15 |
– 3 |
– 3 |
– 7 |
– 8 |
– 2 |
5 |
2 |
2 |
– 4 |
4 |
– 4 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
3 |
– 5 |
19 |
– 20 |
– 1 |
– 2 |
1 |
– 8 |
2 |
2 |
2 |
8 |
– 2 |
3 |
– 12 |
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
– 3 |
– 2 |
– 7 |
– 6 |
0 |
– 2 |
– 7 |
3 |
– 4 |
– 1 |
0 |
– 14 |
2 |
– 5 |
3 |
– 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
– 1 |
– 2 |
1 |
– 8 |
– 3 |
– 4 |
– 1 |
– 16 |
1 |
– 1 |
5 |
– 4 |
3 |
4 |
1 |
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33
Закінчення табл. 1.7
Номер |
а11 |
а12 |
а13 |
а14 |
а21 |
а22 |
а23 |
а24 |
а31 |
а32 |
а33 |
а34 |
а41 |
а42 |
а43 |
а44 |
варіанта |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
– 3 |
3 |
– 1 |
– 2 |
– 1 |
– 2 |
– 4 |
– 3 |
– 3 |
5 |
– 5 |
6 |
– 5 |
– 2 |
1 |
– 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
3 |
3 |
3 |
12 |
2 |
– 1 |
8 |
– 4 |
1 |
3 |
– 3 |
12 |
0 |
– 3 |
6 |
– 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
– 1 |
3 |
5 |
– 2 |
0 |
– 1 |
– 3 |
1 |
– 2 |
0 |
2 |
– 8 |
– 4 |
3 |
– 3 |
– 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
2 |
2 |
2 |
8 |
2 |
1 |
4 |
4 |
– 3 |
3 |
– 15 |
12 |
3 |
– 5 |
19 |
– 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
– 5 |
– 7 |
0 |
– 29 |
0 |
5 |
5 |
5 |
4 |
– 4 |
– 6 |
10 |
5 |
3 |
3 |
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
0 |
3 |
– 6 |
12 |
3 |
4 |
1 |
16 |
2 |
2 |
2 |
8 |
– 2 |
3 |
– 12 |
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
– 2 |
7 |
0 |
8 |
1 |
7 |
6 |
11 |
– 3 |
– 1 |
– 3 |
– 8 |
– 2 |
– 7 |
– 3 |
– 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
– 3 |
– 1 |
– 7 |
– 4 |
– 3 |
– 3 |
– 3 |
– 12 |
1 |
4 |
– 5 |
16 |
– 1 |
3 |
– 9 |
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
– 3 |
– 5 |
– 1 |
– 18 |
0 |
– 2 |
– 1 |
– 3 |
– 1 |
5 |
1 |
6 |
– 1 |
5 |
0 |
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
– 2 |
4 |
– 14 |
16 |
0 |
– 2 |
4 |
– 8 |
2 |
4 |
– 2 |
16 |
1 |
– 5 |
13 |
– 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
– 4 |
– 3 |
1 |
– 19 |
– 1 |
– 2 |
– 5 |
– 2 |
4 |
– 3 |
– 1 |
7 |
0 |
4 |
– 4 |
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
3 |
– 5 |
19 |
– 20 |
– 3 |
0 |
– 9 |
0 |
– 3 |
1 |
– 11 |
4 |
– 2 |
4 |
– 14 |
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
– 5 |
3 |
6 |
– 15 |
– 3 |
– 4 |
2 |
– 19 |
1 |
7 |
7 |
10 |
5 |
6 |
– 4 |
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
3 |
3 |
3 |
12 |
– 3 |
5 |
– 19 |
20 |
2 |
2 |
2 |
8 |
0 |
– 4 |
8 |
– 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
2 |
4 |
4 |
10 |
3 |
3 |
7 |
8 |
5 |
6 |
1 |
26 |
1 |
5 |
4 |
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
2 |
– 1 |
8 |
– 4 |
3 |
4 |
1 |
16 |
1 |
4 |
– 5 |
16 |
3 |
4 |
1 |
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
5 |
4 |
2 |
21 |
3 |
– 2 |
3 |
2 |
3 |
5 |
2 |
17 |
4 |
3 |
– 5 |
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
3 |
– 1 |
11 |
– 4 |
– 1 |
– 1 |
– 1 |
– 4 |
1 |
3 |
– 3 |
12 |
– 1 |
4 |
– 11 |
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Задача 1.8. Звести квадратичну форму a11x12 2a12 x1x2 2a13 x1x3
a22 x22 |
2a23 x2 x3 a33 x32 до канонічного вигляду за даними табл. 1.8. |
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
Таблиця 1.8 |
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Номер |
|
а11 |
а12 |
а13 |
а22 |
а23 |
а33 |
Номер |
а11 |
а12 |
а13 |
а22 |
а23 |
а33 |
варіанта |
|
|
|
|
|
|
|
варіанта |
|
|
|
|
|
|
1 |
|
2 |
– 1 |
3 |
3 |
– 4 |
0 |
2 |
1 |
1 |
– 3 |
3 |
– 4 |
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
– 3 |
– 5 |
3 |
– 4 |
5 |
– 1 |
4 |
1 |
2 |
1 |
1 |
2 |
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
– 1 |
– 1 |
1 |
3 |
2 |
– 3 |
6 |
3 |
3 |
6 |
– 2 |
– 2 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
– 2 |
– 2 |
2 |
1 |
3 |
– 2 |
8 |
1 |
– 5 |
0 |
1 |
1 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34
Продовження табл. 1.8
Номер |
а11 |
а12 |
а13 |
а22 |
а23 |
а33 |
варіанта |
|
|
|
|
|
|
9 |
– 1 |
1 |
5 |
1 |
– 1 |
– 3 |
|
|
|
|
|
|
|
11 |
2 |
3 |
5 |
– 3 |
– 3 |
0 |
|
|
|
|
|
|
|
13 |
2 |
0 |
– 6 |
1 |
1 |
2 |
|
|
|
|
|
|
|
15 |
1 |
– 4 |
0 |
3 |
0 |
1 |
|
|
|
|
|
|
|
17 |
– 1 |
5 |
– 7 |
2 |
0 |
– 3 |
|
|
|
|
|
|
|
19 |
3 |
0 |
2 |
– 2 |
3 |
1 |
|
|
|
|
|
|
|
21 |
1 |
2 |
– 3 |
– 2 |
– 5 |
2 |
|
|
|
|
|
|
|
23 |
– 2 |
– 5 |
1 |
2 |
0 |
– 2 |
|
|
|
|
|
|
|
25 |
1 |
2 |
– 6 |
– 4 |
2 |
1 |
|
|
|
|
|
|
|
27 |
1 |
0 |
– 4 |
3 |
5 |
2 |
|
|
|
|
|
|
|
29 |
– 1 |
1 |
5 |
1 |
– 1 |
– 3 |
|
|
|
|
|
|
|
31 |
1 |
4 |
– 1 |
2 |
– 1 |
1 |
|
|
|
|
|
|
|
33 |
– 1 |
1 |
– 6 |
3 |
3 |
– 2 |
|
|
|
|
|
|
|
35 |
2 |
– 1 |
3 |
2 |
– 5 |
0 |
|
|
|
|
|
|
|
37 |
1 |
3 |
3 |
2 |
– 6 |
3 |
|
|
|
|
|
|
|
39 |
1 |
3 |
1 |
1 |
2 |
2 |
|
|
|
|
|
|
|
41 |
– 2 |
1 |
5 |
1 |
– 2 |
– 2 |
|
|
|
|
|
|
|
43 |
1 |
3 |
– 5 |
– 3 |
3 |
1 |
|
|
|
|
|
|
|
45 |
– 1 |
2 |
5 |
1 |
– 2 |
– 3 |
|
|
|
|
|
|
|
47 |
– 2 |
– 2 |
4 |
2 |
– 5 |
– 1 |
|
|
|
|
|
|
|
49 |
– 3 |
6 |
1 |
– 2 |
3 |
– 1 |
|
|
|
|
|
|
|
51 |
– 2 |
0 |
5 |
– 1 |
– 1 |
– 2 |
|
|
|
|
|
|
|
53 |
– 1 |
1 |
1 |
– 2 |
1 |
– 3 |
|
|
|
|
|
|
|
55 |
– 2 |
– 4 |
2 |
– 2 |
5 |
– 2 |
|
|
|
|
|
|
|
57 |
1 |
– 3 |
4 |
1 |
– 4 |
1 |
|
|
|
|
|
|
|
59 |
2 |
– 2 |
– 1 |
0 |
– 3 |
0 |
|
|
|
|
|
|
|
61 |
2 |
– 3 |
1 |
– 1 |
4 |
1 |
|
|
|
|
|
|
|
63 |
– 2 |
6 |
– 1 |
2 |
– 2 |
– 1 |
|
|
|
|
|
|
|
Номер |
а11 |
а12 |
а13 |
а22 |
а23 |
а33 |
варіанта |
|
|
|
|
|
|
10 |
3 |
1 |
2 |
0 |
2 |
1 |
|
|
|
|
|
|
|
12 |
1 |
4 |
– 1 |
2 |
– 1 |
1 |
|
|
|
|
|
|
|
14 |
2 |
5 |
2 |
0 |
4 |
2 |
|
|
|
|
|
|
|
16 |
2 |
3 |
– 2 |
2 |
– 4 |
2 |
|
|
|
|
|
|
|
18 |
– 2 |
1 |
– 5 |
3 |
3 |
– 1 |
|
|
|
|
|
|
|
20 |
1 |
– 2 |
4 |
1 |
– 4 |
1 |
|
|
|
|
|
|
|
22 |
3 |
– 2 |
0 |
2 |
– 1 |
1 |
|
|
|
|
|
|
|
24 |
– 1 |
– 5 |
0 |
2 |
1 |
– 2 |
|
|
|
|
|
|
|
26 |
– 2 |
– 2 |
2 |
1 |
3 |
– 2 |
|
|
|
|
|
|
|
28 |
2 |
6 |
– 1 |
0 |
– 2 |
2 |
|
|
|
|
|
|
|
30 |
3 |
1 |
2 |
0 |
2 |
1 |
|
|
|
|
|
|
|
32 |
2 |
0 |
– 6 |
1 |
1 |
2 |
|
|
|
|
|
|
|
34 |
1 |
– 2 |
– 7 |
3 |
1 |
2 |
|
|
|
|
|
|
|
36 |
1 |
1 |
– 2 |
2 |
– 4 |
2 |
|
|
|
|
|
|
|
38 |
– 3 |
– 6 |
3 |
– 3 |
6 |
– 1 |
|
|
|
|
|
|
|
40 |
– 3 |
– 1 |
1 |
1 |
3 |
0 |
|
|
|
|
|
|
|
42 |
– 1 |
– 1 |
1 |
2 |
2 |
– 3 |
|
|
|
|
|
|
|
44 |
1 |
0 |
– 3 |
3 |
6 |
2 |
|
|
|
|
|
|
|
46 |
3 |
1 |
2 |
0 |
2 |
1 |
|
|
|
|
|
|
|
48 |
2 |
4 |
– 4 |
0 |
4 |
1 |
|
|
|
|
|
|
|
50 |
1 |
5 |
– 1 |
1 |
– 1 |
1 |
|
|
|
|
|
|
|
52 |
1 |
– 3 |
– 6 |
2 |
1 |
2 |
|
|
|
|
|
|
|
54 |
2 |
– 2 |
3 |
3 |
5 |
2 |
|
|
|
|
|
|
|
56 |
– 2 |
2 |
– 4 |
2 |
3 |
– 1 |
|
|
|
|
|
|
|
58 |
1 |
3 |
– 3 |
– 2 |
– 6 |
2 |
|
|
|
|
|
|
|
60 |
2 |
– 2 |
1 |
1 |
3 |
1 |
|
|
|
|
|
|
|
62 |
1 |
7 |
– 1 |
– 3 |
– 3 |
1 |
|
|
|
|
|
|
|
64 |
1 |
– 1 |
4 |
– 3 |
– 6 |
1 |
|
|
|
|
|
|
|
35
Закінчення табл. 1.8
Номер |
а11 |
а12 |
а13 |
а22 |
а23 |
а33 |
варіанта |
|
|
|
|
|
|
65 |
2 |
1 |
5 |
0 |
– 1 |
1 |
|
|
|
|
|
|
|
67 |
1 |
– 1 |
– 6 |
– 2 |
0 |
2 |
|
|
|
|
|
|
|
69 |
2 |
– 2 |
2 |
– 1 |
4 |
1 |
|
|
|
|
|
|
|
71 |
– 1 |
– 2 |
4 |
2 |
– 4 |
– 2 |
|
|
|
|
|
|
|
73 |
1 |
1 |
– 5 |
2 |
4 |
1 |
|
|
|
|
|
|
|
75 |
1 |
1 |
– 3 |
3 |
– 4 |
2 |
|
|
|
|
|
|
|
77 |
– 1 |
– 2 |
– 3 |
– 3 |
5 |
– 3 |
|
|
|
|
|
|
|
79 |
1 |
3 |
– 5 |
5 |
– 6 |
3 |
|
|
|
|
|
|
|
81 |
4 |
2 |
4 |
0 |
3 |
1 |
|
|
|
|
|
|
|
83 |
2 |
– 10 |
1 |
5 |
0 |
2 |
|
|
|
|
|
|
|
85 |
1 |
2 |
– 4 |
5 |
– 8 |
3 |
|
|
|
|
|
|
|
87 |
2 |
– 7 |
5 |
– 3 |
– 14 |
2 |
|
|
|
|
|
|
|
89 |
– 1 |
– 1 |
2 |
5 |
6 |
– 4 |
|
|
|
|
|
|
|
91 |
4 |
2 |
3 |
0 |
4 |
1 |
|
|
|
|
|
|
|
93 |
4 |
– 8 |
– 3 |
4 |
– 7 |
1 |
|
|
|
|
|
|
|
95 |
3 |
– 2 |
4 |
3 |
4 |
1 |
|
|
|
|
|
|
|
97 |
3 |
6 |
– 13 |
– 6 |
5 |
1 |
|
|
|
|
|
|
|
99 |
3 |
– 2 |
2 |
3 |
7 |
1 |
|
|
|
|
|
|
|
Номер |
а11 |
а12 |
а13 |
а22 |
а23 |
а33 |
варіанта |
|
|
|
|
|
|
66 |
1 |
– 7 |
2 |
2 |
– 7 |
2 |
|
|
|
|
|
|
|
68 |
2 |
– 1 |
2 |
2 |
2 |
1 |
|
|
|
|
|
|
|
70 |
1 |
5 |
– 1 |
– 3 |
– 3 |
1 |
|
|
|
|
|
|
|
72 |
1 |
– 1 |
4 |
– 4 |
– 5 |
1 |
|
|
|
|
|
|
|
74 |
– 3 |
3 |
2 |
3 |
4 |
– 1 |
|
|
|
|
|
|
|
76 |
3 |
3 |
4 |
4 |
6 |
0 |
|
|
|
|
|
|
|
78 |
– 3 |
– 3 |
– 6 |
2 |
2 |
– 1 |
|
|
|
|
|
|
|
80 |
– 4 |
– 2 |
2 |
3 |
5 |
0 |
|
|
|
|
|
|
|
82 |
– 4 |
12 |
4 |
– 4 |
5 |
– 1 |
|
|
|
|
|
|
|
84 |
– 4 |
6 |
3 |
4 |
11 |
– 1 |
|
|
|
|
|
|
|
86 |
1 |
4 |
5 |
4 |
– 14 |
4 |
|
|
|
|
|
|
|
88 |
– 2 |
2 |
9 |
2 |
– 4 |
– 2 |
|
|
|
|
|
|
|
90 |
2 |
3 |
– 3 |
– 1 |
– 8 |
2 |
|
|
|
|
|
|
|
92 |
3 |
3 |
– 7 |
– 4 |
11 |
2 |
|
|
|
|
|
|
|
94 |
1 |
– 3 |
– 10 |
5 |
4 |
2 |
|
|
|
|
|
|
|
96 |
2 |
2 |
13 |
0 |
– 1 |
1 |
|
|
|
|
|
|
|
98 |
4 |
0 |
3 |
– 4 |
7 |
1 |
|
|
|
|
|
|
|
100 |
2 |
2 |
– 7 |
3 |
10 |
2 |
|
|
|
|
|
|
|
36
Розділ 2. ВЕКТОРНА АЛГЕБРА. АНАЛІТИЧНА ГЕОМЕТРІЯ
Задача 2.1. Дано координати вершин піраміди А1 (x1, y1, z1) А2
(x2, y2, z2) А3 (x3, y3, z3) А4 (4, 0, 5). За даними табл. 2.1 знайти:
а) довжину ребра А1А2;
б) площу грані А1А2А3; в) кут між ребрами А1А2 і А1А4;
г) об’єм піраміди А1А2А3А4; д) напрямні косинуси вектора А1А4.
Таблиця 2.1
Номер |
х1 |
у1 |
z1 |
х2 |
у2 |
z2 |
х3 |
у3 |
z3 |
|
варіанта |
||||||||||
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
1 |
1 |
– 2 |
3 |
3 |
2 |
1 |
6 |
4 |
4 |
|
|
|
|
|
|
|
|
|
|
|
|
2 |
0 |
0 |
2 |
3 |
0 |
5 |
1 |
1 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
3 |
3 |
0 |
5 |
0 |
0 |
2 |
4 |
1 |
2 |
|
|
|
|
|
|
|
|
|
|
|
|
4 |
1 |
1 |
0 |
4 |
1 |
2 |
0 |
0 |
2 |
|
|
|
|
|
|
|
|
|
|
|
|
5 |
4 |
1 |
2 |
1 |
1 |
0 |
3 |
0 |
5 |
|
|
|
|
|
|
|
|
|
|
|
|
6 |
3 |
1 |
0 |
0 |
7 |
2 |
– 1 |
0 |
– 5 |
|
|
|
|
|
|
|
|
|
|
|
|
7 |
1 |
– 1 |
1 |
0 |
2 |
4 |
1 |
3 |
3 |
|
|
|
|
|
|
|
|
|
|
|
|
8 |
1 |
– 1 |
2 |
2 |
1 |
1 |
1 |
1 |
4 |
|
|
|
|
|
|
|
|
|
|
|
|
9 |
1 |
– 3 |
2 |
5 |
1 |
– 4 |
2 |
0 |
3 |
|
|
|
|
|
|
|
|
|
|
|
|
10 |
3 |
5 |
3 |
– 2 |
11 |
– 5 |
1 |
2 |
4 |
|
|
|
|
|
|
|
|
|
|
|
Задача 2.1-1. Дано довжини а, b, с ребер ОА, ОВ, ОС прямокутного паралелепіпеда. За даними табл. 2.1-1 знайти:
а) площу трикутника, утвореного діагоналями, які виходять з точки О, граней АОВ і ВОС;
б) проекцію вектора АB на вектор BC ; в) кут АВС; г) довжину діагоналі паралелепіпеда;
д) об’єм піраміди ОАВС.
37
Таблиця 2.1-1
Номер варі- |
а |
b |
с |
|
анта |
||||
|
|
|
||
|
|
|
|
|
11 |
4 |
2 |
3 |
|
|
|
|
|
|
12 |
3 |
1 |
4 |
|
|
|
|
|
|
13 |
3 |
2 |
5 |
|
|
|
|
|
|
14 |
2 |
3 |
4 |
|
|
|
|
|
|
15 |
5 |
2 |
3 |
|
|
|
|
|
|
16 |
4 |
2 |
4 |
|
|
|
|
|
|
17 |
3 |
3 |
2 |
|
|
|
|
|
|
18 |
2 |
1 |
5 |
|
|
|
|
|
|
19 |
6 |
3 |
5 |
|
|
|
|
|
|
20 |
2 |
5 |
4 |
|
|
|
|
|
Задача 2.1-2. Дано три послідовні вершини паралелограма А, В, С. Заданими табл. 2.1-2 знайти:
а) координати вершини D; б) площу трикутника АВС; в) довжину діагоналі AD; г) кут АВС; д) об’єм піраміди ОАВС.
Таблиця 2.1-2
Номер варі- |
х1 |
у1 |
z1 |
х2 |
у2 |
z2 |
х3 |
у3 |
z3 |
|
анта |
||||||||||
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
21 |
1 |
– 2 |
3 |
3 |
2 |
1 |
6 |
4 |
4 |
|
|
|
|
|
|
|
|
|
|
|
|
22 |
0 |
0 |
2 |
3 |
0 |
5 |
1 |
1 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
23 |
3 |
0 |
5 |
0 |
0 |
2 |
4 |
1 |
2 |
|
|
|
|
|
|
|
|
|
|
|
|
24 |
1 |
1 |
0 |
4 |
1 |
2 |
0 |
0 |
2 |
|
|
|
|
|
|
|
|
|
|
|
|
25 |
4 |
1 |
2 |
1 |
1 |
0 |
3 |
0 |
5 |
|
|
|
|
|
|
|
|
|
|
|
|
26 |
3 |
1 |
0 |
0 |
7 |
2 |
– 1 |
0 |
– 5 |
|
|
|
|
|
|
|
|
|
|
|
|
27 |
1 |
– 1 |
1 |
0 |
2 |
4 |
1 |
3 |
3 |
|
|
|
|
|
|
|
|
|
|
|
|
28 |
1 |
– 1 |
2 |
2 |
1 |
1 |
1 |
1 |
4 |
|
|
|
|
|
|
|
|
|
|
|
|
29 |
1 |
– 3 |
2 |
5 |
1 |
– 4 |
2 |
0 |
3 |
|
|
|
|
|
|
|
|
|
|
|
|
30 |
3 |
5 |
3 |
– 2 |
11 |
– 5 |
1 |
2 |
4 |
|
|
|
|
|
|
|
|
|
|
|
38
Задача 2.1-3. На векторах m a i b j, |
|
|
|
|
|
n c j dk |
, |
p kj lk |
|||
побудовано паралелепіпед ( i, j, k — орти відповідної системи
координат). За даними табл. 2.1-3 знайти: а) об’єм паралелепіпеда;
б) площу грані, побудованої на векторах m i n ;
в) довжину діагоналі паралелограма, побудованого на векторах
m i p;
г) кут між стороною m і діагоналлю грані, утвореної векторами m i p.
|
|
|
|
|
|
|
|
|
|
|
Таблиця2.1-3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Номер |
|
а |
|
b |
с |
d |
k |
l |
|
|
|
|
варіанта |
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
1 |
|
2 |
3 |
– 1 |
– 2 |
– 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
2 |
|
1 |
2 |
3 |
– 1 |
– 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
3 |
|
2 |
1 |
2 |
3 |
– 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
4 |
|
3 |
2 |
1 |
2 |
– 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
5 |
|
4 |
3 |
2 |
1 |
– 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
6 |
|
5 |
4 |
3 |
2 |
– 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
7 |
|
6 |
5 |
4 |
3 |
– 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
8 |
|
7 |
6 |
5 |
4 |
– 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
9 |
|
8 |
7 |
6 |
5 |
– 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
0 |
|
1 |
2 |
3 |
– 1 |
– 2 |
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
Задача2.1-4. Паралелограм побудовано навекторах a mp nq |
||||||||||
і |
|
sp rq, де q i |
p |
— одиничні орти, кут між якими p , q = |
||||||||
b |
||||||||||||
3 . За даними табл. 2.1-4 знайти:
а) довжини діагоналей; б) кут між діагоналями.
39
