анестезіологія6 / Руководство по анестезиологии Бунятян
.pdfстые отростки от CVII до крестца. Межостистая связка скрепляет все остистые отростки в сагиттальной плоскости. Дуги позвонков скрепляются эластическими волокнами, которые имеют желтый цвет, отличаются большой плотностью и полностью прикрывают центральный канал спинного мозга сзади (желтая связка).
При пункции центрального канала спинного мозга следует иметь в виду неодинаковое положение остистых отростков в различных отделах позвоночника. Шейные, два верхних грудных и нижние поясничные остистые отростки располагаются почти горизонтально и по уровню расположения полностью соответствуют позвонкам, от которых они отходят. Остистые отростки остальных позвонков направлены вниз, черепицеобразно накладываясь один на другой. Верхушки их находятся на уровне тел нижележащих позвонков, прикрывая собой сзади желтую связку. При максимальном сгибании шеи и туловища вперед остистые отростки несколько раздвигаются, что при пункции улучшает доступ к позвоночному каналу. В центральном канале спинного мозга различают эпидуральное и субарахноидальное пространства.
Эпидуральное пространство (cavitas epiduralis), которое также называют перидуральным и экстрадуральным, расположено между твердой мозговой оболочкой и надкостницей позвонков (рис. 5.16). Оно заполнено жировой тканью и богатой сетью сосудов. Эпидуральное пространство со всех сторон окружает спинной мозг, но приблизительно 9/10 его объема находится в задней части. Эпидуральное пространство начинается от шейного отдела позвоночника и оканчивается в крестцовом канале. В отличие от центрального канала спинного мозга оно не сообщается с большим затылочным отверстием и черепномозговой полостью. Анестетики, введенные в него, не вызывают развития центрального паралича. Раствор из эпидурального пространства распространяется вверх и вниз по клетчатке позвоночного канала и через боковые отверстия проникает в паравертебральное пространство. Считают, что 1 мл раствора анестетика распространяется на один сегмент от места инъекции. Наиболее широким Эпидуральное пространство становится в поясничной области (5—6 мм), где его пункция наиболее безопасна. Это пространство сужено в шейной области до 1 —1,5 мм и значительно больше (2,5—4 мм) в грудной, где размер спинного мозга несколькд меньше При пункции эпидурального пространства игла проходит надостистую, межостистую и желтую связки. Последняя является наиболее важным анатомическим ориентиром ввиду ее значительной толщины (рис. 5.17).
Рис. 5.16. Оболочки спинного мозга (вид сверху).
1 — желтая связка, 2 — Эпидуральное пространство, 3 — твердая мозговая оболочка, 4 — спинной мозг
Подпаутинное пространство (cavitas subarachnoidealis). При дальнейшем продвижении игла после желтой связки проходит твердую и паутинную мозговые оболочки и достигает подпаутинного пространства (см. разделы «Головной мозг» и «Спинной мозг»). Основным ориентиром служит наличие спинномозговой жидкости.
Плечевое сплетение (plexus brachialis) состоит из 5—8-го шейных и 1-го грудного спинномозговых нервов и иннервирует всю верхнюю конечность и глубокие части плечевого сустава. Оно расположено в одном пучке над ключицей, что очень удобно для местного обезболивания. Наружные части плечевого пояса иннервируют: область ключицы — надключичными нервами, подмышечную впадину — межреберными нервами, область лопатки — грудными спинномозговыми нервами (Т1 — Т4).
Рис. 5.17. Анатомические ориентиры при пункции эпидурального пространства 1 — кожа, 2 — подкожная жировая клетчатка, 3 — надостистая связка, 4 — межостистая связка, 5 желтая связка, б — эпиду ральное пространство, 7 — твердая мозговая оболочка 8 — остистый отросток по звонка.
Анатомическим ориентиром плечевого сплетения является надключичная ямка, составляющая среднюю часть надключичной области. В медиальной части этой области находится верхняя апертура грудной клетки, из которой выходиткупол плевры, защищенный ременной мышцей головы (m. splenius), мышцей, поднимающей лопатку (m. levator scapulae) и лестничной мышцей (m. scalenus). Плечевое сплетение из надключичной ямки проходит под ключицей в подмышечную впадину между передней и средней лестничными мышцами и на высоте I ребра составляет сплошной нервный пучок, который по выходе из-под ключицы опять делится на отдельные ветви (рис. 5.18).
Рис. 5.18. Топографоанатомические соотношения в области плечевого сплетения
1 — внутренняя яремная вена, 2 передняя лестничная мышца, 3 — правая плечеголовная вена, 4 пра вая подключичная артерия, 5 правая подключичная вена 6 плечевое сплетение 7 трапециевидная мышца, 8 — грудиноключично сосцевидная мышца
Местом для анестезии является точка на 0,5—1 см выше середины ключицы и кнаружи от подключичной артерии. Иглу следует направлять к остистым отросткам II и III грудных позвонков.
Пояснично-крестцовое сплетение (plexus lumbosacrahs) состоит из трех поясничных нервов, 12-го грудного и части 4-го поясничного нервов, образующих поясничное сплетение, и из 5-го, части 4-го поясничного, 1 — 3-го сакральных нервов, образующих крестцовое сплетение. Для тотальной анестезии нижней конечности важна блокада седалищного, бедренного и запирательного нервов.
Точка блокады седалищного нерва находится на пересечении: 1) линии, соединяющей заднюю верхнюю ость подвздошной кости с наружным краем седалищного бугра, 2) линии, соединяющей большой вертел бедренной кости с верхним концом ягодичной складки; 3) линии, проведенной от точки пересече-
ния двух предыдущих линий с передней верхней остью подвздошной кости (рис. 5.19).
Рис. 5.19. Анатомические ориентиры при блокаде седалищного нерва 1 межъягодичная (.кладка, 2 задняя верхняя ость подвздошной кости 3 большой
вертел бедренном кости 4 седалищный буюр 5 точка вкола иглы ( грелкой указано направленно иглы
Бедренный нерв в бедренном треугольнике располагается кнаружи от бедренной артерии (см. рис. 5.12). Местом блокады этого нерва является точка, расположенная на 1 см кнаружи от бедренной артерии, сразу под паховой связкой на глубине 0,5—1 см под широкой фасцией бедра.
СПИСОК ЛИТЕРАТУРЫ
Международная комиссия по радиологической защите (МКРЗ). Публикация № 23. Медико-биологические данные.—М.: Медицина, 1977.
Привес М.Г. Лысенков Н.К., Бушкович В.И. Анатомия человека.—М.: Медицина, 1985.
Роузен М., Латто Я.П., Шэнго Не. У. Чрескожная катетеризация центральных вен: Пер. с англ. М.: Медицина, 1986.
Синельников Р.Д. Атлас анатомии человека.—М.: Медицина, 1973.— Т.
1—л.
Стауффер Дж Л Интубация трахеи // Неотложные состояния в пульмонологии / Под ред. С. А. Сана.- М., 1986.- С. 35-73.
Стивенсон X Е Патофизиологическое обоснование оживления с помощью массажа сердца// Современные проблемы реаниматологии / Под ред. П. Д. Горизонтова и А.М. Гурвича.— М., 1980.— С. 192—196.
Тарроу Л.Б., Эриксон Д.К. Теоретические и клинические основы анестезиологии: Пер. с англ.— М.: Медицина, 1977.
Трудности при интубации трахеи / Под ред. И. П. Патто, М. Роузена.- М.: Медицина 1989
Horsfield К., Gumming G. Morphology of the bronchial tree in man // J. appl. Physiol., 1968.— Vol.
Scammon R. E. A Summary of the Anatomy of the Infant and Child // Pediatrics. V. I. Ed. I. A. Abt.— Philadelphia, 1923.-P. 257-444.
Weibel E. R. Morphometry of the human lung.—New York: Acad. Press.,
1963.
Глава 6
ТЕОРИИ И МЕХАНИЗМЫ ОБЩЕЙ АНЕСТЕЗИИ
Впервые десятилетия после открытия наркоза, когда выяснилось чрезвычайно важное значение его для развития хирургии, перед естествоиспытателями встал вопрос о сущности этого загадочного явления. Важно было выяснить место приложения и механизм действия наркотических веществ.
Вэтом отношении один из первых выразил свою точку зрения Н.И. Пирогов В 1848 г., основываясь на результатах многочисленных экспериментов на животных и опыте применения наркоза у больных, он пришел к заключению, что наркотический эффект эфира проявляется лишь тогда, когда насыщенная его парами кровь «придет в соприкосновение с органами нервной системы». Уже в тот период Н.И. Пирогов установил, что при сильном насыщении нервной системы эфиром сохраняются лишь те регуляторные функции, которые реализуются структурами продолговатого мозга.
Вдальнейшем исследователями в этой области был предложен ряд концепций объясняющих своеобразный эффект наркотических веществ. За ними закрепилось название «теории наркоза». Некоторые из них в настоящее время представляют лишь исторический интерес, поэтому ниже дана краткая характеристика только тех ранних теорий, которые имеют определенное значение для современного понимания механизма развития общей анестезии.
6.1.Ранние теории общей анестезии
Механизм развития наркотического состояния при вдыхании паров диэтилового эфира, хлороформа и некоторых других средств ученые вплоть до начала XX в. пытались связать в основном с теми или иными физикохимическими изменениями в тканях, не проявляя большого интереса к сущности нейрофизиологических сдвигов, вызываемых этими веществами. Поскольку клиническая картина наркоза, достигаемого различными веществами, в основных проявлениях имела много общего, исследователи исходили из представления о едином механизме действия общих анестетиков.
Одной из первых теорий наркоза была коагуляционная [Кюн, 1864) . Предпосылкой для нее явилось свойство диэтилового эфира и хлороформа вызывать своеобразное свертывание внутриклеточного белка с образованием зернистости в протоплазме. Эти значительные изменения в структуре клетки и рассматривались в качестве основной причины нарушения ее функции. Однако позже выяснилось, что отмеченные изменения возникают лишь при концентрациях анестетиков в тканях, значительно превосходящих уровень, достигаемый в клинических условиях.
К этому же периоду относится и разработка липоидной теории [Германн,
1866]. В дальнейшем она получила развитие в работах Мейера и Овертона (1899—1901). Эта теория была основана на двух установленных к тому времени фактах: 1) значительной липоидотропности использовавшихся тогда наркотических веществ; 2) высоком содержании липоидов в нервных клетках. Согласно рассматриваемой теории, насыщение анестетиками богатых липоидами клеточных мембран создает барьер для обмена веществ в клетке. Определенным подтверждением правильности гипотезы считали зависимость выраженности наркотического эффекта анестетиков, т.е. их силы действия, по степени сродства к липоидам (закон Мейера — Овертона). В дальнейшем было выяснено, что такая закономерность прослеживается в отношении большинства ингаляционных анестетиков. Наряду с этим обнаружились исключения. Таким образом, связь между растворимостью наркотических веществ в жирах и силой их действия оказалась не универсальной.
Несмотря на то, что липоидная теория является во многом несостоятельной, накопленные в процессе разработки ее факты в значительной степени способствовали успеху дальнейших изысканий.
В начале XX в. была предпринята попытка объяснить наркотический эффект применявшихся тогда общих анестетиков на основе изменений, называемых ими на границе водной и липопротеиновой фаз мембраны нервных клеток. Исследования в этом направлении показали, что анестетики жирного ряда обладают свойством снижать поверхностное натяжение на границе между липоидной оболочкой клетки в окружающей ее жидкости [Траубе, 1904—1913]. Следствием такого влияния является повышение проницаемости мембраны вообще и для молекул анестетиков в частности. Эта концепция, получившая название теории поверхностного натяжения, в некоторой степени близка разработанной также в тот период адсорбционной теории. Автор ее [Лове, 1912] исходил из свойства анестетиков повышать проницаемость клеточных мембран и высокой сорбционной способности их в отношении внутриклеточных липоидов, находящихся в коллоидном состоянии. Предполагалось, что именно вследствие высокого насыщения анестетиком липопротеиновых структур нервных клеток блокируется их специфическая функция.
Адсорбционная теория создала предпосылки для построения очередной гипотезы, объясняющей наркотический эффект анестетиков их ингибирующим влиянием на ферментные комплексы, занимающие ключевое положение в обеспечении окислительно-восстановительных процессов в клетках [Варбург, 1911; Ферворн, 1912].
Некоторые научные материалы, свидетельствовавшие о такого рода влиянии анестетиков на метаболизм клеток, привели к формированию гипоксической теории наркоза. В соответствии с ней торможение функции ЦНС при насыщении анестетиками жирного ряда возникает в результате нарушения энергетики клеток. В 30—50-х годах эта теория нашла многочисленных сторонников. Однако при всей заманчивости и обстоятельности выдвинутых в пользу этой
теории обоснований со временем обнаружились слабые стороны ее. В частности, было выяснено, что в условиях общей анестезии клеточный метаболизм нарушается далеко не всегда. Характерные для гипоксии метаболические изменения в клетке обычно возникают лишь при высокой концентрации некоторых анестетиков в тканях, значительно превышающей используемую в клинических условиях. Не получено также убедительных данных о снижении потребления кислорода клетками. Результаты некоторых исследований свидетельствуют, что в нейронах наркотизированных животных содержание аденозинтрифосфата (АТФ) остается близким к нормальному. Во многом не согласуется с гипоксической теорией наркоза и динамика (КОС) тканей и оттекающей от ЦНС крови. Не укладывается в нее также быстрое восстановление функции нейронов после удаления из них анестетика. Если бы анестетики вызывали существенные метаболические сдвиги, которые неизбежны при гипоксии тканей, быстрое восстановление функции ЦНС при удалении анестетика из организма было бы маловероятным. Все отмеченные моменты вызывают серьезное сомнение в правильности основных положений гипоксической теории наркоза.
В 1961 г. Полинг предложил теорию водных микрокристаллов, объясняющую развитие наркотического состояния под влиянием общих анестетиков свойством последних образовывать в водной фазе тканей своеобразные кристаллы. Они, как выяснилось, создают препятствие для перемещения катионов через мембрану клетки и тем самым блокируют процесс деполяризации и формирование потенциала действия.
Однако дальнейшие исследования показали, что свойством кристаллообразования обладают не все общие анестетики. Те же из них, для которых характерен этот феномен, образуют кристаллы при концентрациях, превышающих используемые в клинической практике.
Из всех теорий наркоза, предложенных в первое столетие со времени начала изучения механизма действия наркотических средств, наибольшее развитие в дальнейшем получила мембранная теория. На раннем этапе формирования [Хобер, 1907; Винтерштейн, 1916] она, как и некоторые другие теории наркоза, базировалась на данных о влиянии наркотических веществ на физикохимические свойства клеточных мембран. Развитие наркотического состояния авторы связывали с нарушением проницаемости мембран нервных клеток для метаболитов. В таком виде рассматриваемая теория не заключала в себе новых существенных элементов по сравнению с ранее разработанными теориями наркоза.
Большое значение для дальнейшего развития мембранной теории наркоза имели результаты фундаментальных исследований электрического трансмембранного потенциала и роли электрических процессов, происходящих на мембране клетки, в формировании потенциала действия и распространении возбуждения как в пределах одного нейрона, так и при межнейронных контактах. Первая гипотеза, связывающая возбуждение клетки с изменением чрезмембранного
электрического потенциала, принадлежит Бернштейну (1912). Он представлял возбуждение как результат распространения потенциала действия, но развитие его в зоне влияния возбуждающего фактора объяснял деполяризацией мембраны на основе одинакового по интенсивности потока Na+ внутрь клетки и К+ в обратном направлении.
В дальнейшем выяснилось, что при таком понимании процессов, происходящих в клетке в ответ на раздражение ее, величина потенциала на границе деполяризованной и поляризованной зон мембраны не может быть выше потенциала покоя и, соответственно, не может вызывать распространения возбуждения, так как потенциал действия должен превышать трансмембранный потенциал покоя (60—80 мВ) не менее чем в 1,5 раза Ответ на возникший вопрос был найден после того, как A Hodgkin и В. Katz (1949) установили, что перемещение К+ и Na+ через мембрану при раздражении клетки происходит неравномерно: выходу К+ из клетки предшествует интенсивный ток Na+ в клетку. При этом в зоне раздражения на мембране клетки возникает обратное обычному распределение зарядов, т.е. снаружи электрический заряд становится отрицательным, а с внутренней поверхности — положительным. Возникающий на границе возбуждения потенциал при таком изменении электрического заряда мембраны значительно превышает потенциал покоя, что и обусловливает способность его распространять возбуждение. Возвращение К+ в клетку и извлечение из нее Na+ (катионный насос) происходит в следующей фазе и сопровождается затратой АТФ. В механизме перехода клетки из состояния покоя в состояние возбуждения с последующим восстановлением трансмембранного потенциала покоя важную роль придают Са2+. С влиянием их связывают интенсивности тока Na+ и К+ через мембрану во время ее деполяризации и восстановления потенциала покоя.
Интимный механизм перемещения катионов через клеточную мембрану при формировании потенциала действия, его распространении и восстановлении исходного состояния клетки остается не вполне ясным. Существует мнение, что поток ионов идет не через фосфолипидные структуры мембраны, а через своеобразные «каналы», образованные белковыми молекулами. Причем предполагают наличие молекул-проводников, перемещающих по этим «каналам» Na+ и К+ [Gage P. W., Hammil О. Р., 1981; Roth S. Н., 1979].
Помимо рассмотренных выше представлений об электрических процессах, сопровождающих возбуждение клеток, изложению современного понимания механизмов действия общих анестетиков целесообразно предпослать краткие сведения о структуре и функции межнейронных контактов. Для них характерны специфическая чувствительность к определенным эндогенным веществам (медиаторам) и также определенным фармакологическим средствам, некоторое замедление проведения возбуждения по сравнению с нервным волокном, односторонность проведения импульсов. Помимо этого, синапсы обладают способностью суммировать импульсы и трансформировать ритмическое возбужде-
