
- •Practical Unit Testing with JUnit and Mockito
- •Table of Contents
- •About the Author
- •Acknowledgments
- •Preface
- •Preface - JUnit
- •Part I. Developers' Tests
- •Chapter 1. On Tests and Tools
- •1.1. An Object-Oriented System
- •1.2. Types of Developers' Tests
- •1.2.1. Unit Tests
- •1.2.2. Integration Tests
- •1.2.3. End-to-End Tests
- •1.2.4. Examples
- •1.2.5. Conclusions
- •1.3. Verification and Design
- •1.5. Tools Introduction
- •Chapter 2. Unit Tests
- •2.1. What is a Unit Test?
- •2.2. Interactions in Unit Tests
- •2.2.1. State vs. Interaction Testing
- •2.2.2. Why Worry about Indirect Interactions?
- •Part II. Writing Unit Tests
- •3.2. Class To Test
- •3.3. Your First JUnit Test
- •3.3.1. Test Results
- •3.4. JUnit Assertions
- •3.5. Failing Test
- •3.6. Parameterized Tests
- •3.6.1. The Problem
- •3.6.2. The Solution
- •3.6.3. Conclusions
- •3.7. Checking Expected Exceptions
- •3.8. Test Fixture Setting
- •3.8.1. Test Fixture Examples
- •3.8.2. Test Fixture in Every Test Method
- •3.8.3. JUnit Execution Model
- •3.8.4. Annotations for Test Fixture Creation
- •3.9. Phases of a Unit Test
- •3.10. Conclusions
- •3.11. Exercises
- •3.11.1. JUnit Run
- •3.11.2. String Reverse
- •3.11.3. HashMap
- •3.11.4. Fahrenheits to Celcius with Parameterized Tests
- •3.11.5. Master Your IDE
- •Templates
- •Quick Navigation
- •Chapter 4. Test Driven Development
- •4.1. When to Write Tests?
- •4.1.1. Test Last (AKA Code First) Development
- •4.1.2. Test First Development
- •4.1.3. Always after a Bug is Found
- •4.2. TDD Rhythm
- •4.2.1. RED - Write a Test that Fails
- •How To Choose the Next Test To Write
- •Readable Assertion Message
- •4.2.2. GREEN - Write the Simplest Thing that Works
- •4.2.3. REFACTOR - Improve the Code
- •Refactoring the Tests
- •Adding Javadocs
- •4.2.4. Here We Go Again
- •4.3. Benefits
- •4.4. TDD is Not Only about Unit Tests
- •4.5. Test First Example
- •4.5.1. The Problem
- •4.5.2. RED - Write a Failing Test
- •4.5.3. GREEN - Fix the Code
- •4.5.4. REFACTOR - Even If Only a Little Bit
- •4.5.5. First Cycle Finished
- •‘The Simplest Thing that Works’ Revisited
- •4.5.6. More Test Cases
- •But is It Comparable?
- •Comparison Tests
- •4.6. Conclusions and Comments
- •4.7. How to Start Coding TDD
- •4.8. When not To Use Test-First?
- •4.9. Should I Follow It Blindly?
- •4.9.1. Write Good Assertion Messages from the Beginning
- •4.9.2. If the Test Passes "By Default"
- •4.10. Exercises
- •4.10.1. Password Validator
- •4.10.2. Regex
- •4.10.3. Booking System
- •Chapter 5. Mocks, Stubs, Test Spies
- •5.1. Introducing Mockito
- •5.1.1. Creating Test Doubles
- •5.1.2. Expectations
- •5.1.3. Verification
- •5.1.4. Conclusions
- •5.2. Types of Test Double
- •5.2.1. Code To Be Tested with Test Doubles
- •5.2.2. The Dummy Object
- •5.2.3. Test Stub
- •5.2.4. Test Spy
- •5.2.5. Mock
- •5.3. Putting it All Together
- •5.4. Example: TDD with Test Doubles
- •5.4.2. The Second Test: Send a Message to Multiple Subscribers
- •Refactoring
- •5.4.3. The Third Test: Send Messages to Subscribers Only
- •5.4.4. The Fourth Test: Subscribe More Than Once
- •Mockito: How Many Times?
- •5.4.5. The Fifth Test: Remove a Subscriber
- •5.4.6. TDD and Test Doubles - Conclusions
- •More Test Code than Production Code
- •The Interface is What Really Matters
- •Interactions Can Be Tested
- •Some Test Doubles are More Useful than Others
- •5.5. Always Use Test Doubles… or Maybe Not?
- •5.5.1. No Test Doubles
- •5.5.2. Using Test Doubles
- •No Winner So Far
- •5.5.3. A More Complicated Example
- •5.5.4. Use Test Doubles or Not? - Conclusion
- •5.6. Conclusions (with a Warning)
- •5.7. Exercises
- •5.7.1. User Service Tested
- •5.7.2. Race Results Enhanced
- •5.7.3. Booking System Revisited
- •5.7.4. Read, Read, Read!
- •Part III. Hints and Discussions
- •Chapter 6. Things You Should Know
- •6.1. What Values To Check?
- •6.1.1. Expected Values
- •6.1.2. Boundary Values
- •6.1.3. Strange Values
- •6.1.4. Should You Always Care?
- •6.1.5. Not Only Input Parameters
- •6.2. How to Fail a Test?
- •6.3. How to Ignore a Test?
- •6.4. More about Expected Exceptions
- •6.4.1. The Expected Exception Message
- •6.4.2. Catch-Exception Library
- •6.4.3. Testing Exceptions And Interactions
- •6.4.4. Conclusions
- •6.5. Stubbing Void Methods
- •6.6. Matchers
- •6.6.1. JUnit Support for Matcher Libraries
- •6.6.2. Comparing Matcher with "Standard" Assertions
- •6.6.3. Custom Matchers
- •6.6.4. Advantages of Matchers
- •6.7. Mockito Matchers
- •6.7.1. Hamcrest Matchers Integration
- •6.7.2. Matchers Warning
- •6.8. Rules
- •6.8.1. Using Rules
- •6.8.2. Writing Custom Rules
- •6.9. Unit Testing Asynchronous Code
- •6.9.1. Waiting for the Asynchronous Task to Finish
- •6.9.2. Making Asynchronous Synchronous
- •6.9.3. Conclusions
- •6.10. Testing Thread Safe
- •6.10.1. ID Generator: Requirements
- •6.10.2. ID Generator: First Implementation
- •6.10.3. ID Generator: Second Implementation
- •6.10.4. Conclusions
- •6.11. Time is not on Your Side
- •6.11.1. Test Every Date (Within Reason)
- •6.11.2. Conclusions
- •6.12. Testing Collections
- •6.12.1. The TDD Approach - Step by Step
- •6.12.2. Using External Assertions
- •Unitils
- •Testing Collections Using Matchers
- •6.12.3. Custom Solution
- •6.12.4. Conclusions
- •6.13. Reading Test Data From Files
- •6.13.1. CSV Files
- •6.13.2. Excel Files
- •6.14. Conclusions
- •6.15. Exercises
- •6.15.1. Design Test Cases: State Testing
- •6.15.2. Design Test Cases: Interactions Testing
- •6.15.3. Test Collections
- •6.15.4. Time Testing
- •6.15.5. Redesign of the TimeProvider class
- •6.15.6. Write a Custom Matcher
- •6.15.7. Preserve System Properties During Tests
- •6.15.8. Enhance the RetryTestRule
- •6.15.9. Make an ID Generator Bulletproof
- •Chapter 7. Points of Controversy
- •7.1. Access Modifiers
- •7.2. Random Values in Tests
- •7.2.1. Random Object Properties
- •7.2.2. Generating Multiple Test Cases
- •7.2.3. Conclusions
- •7.3. Is Set-up the Right Thing for You?
- •7.4. How Many Assertions per Test Method?
- •7.4.1. Code Example
- •7.4.2. Pros and Cons
- •7.4.3. Conclusions
- •7.5. Private Methods Testing
- •7.5.1. Verification vs. Design - Revisited
- •7.5.2. Options We Have
- •7.5.3. Private Methods Testing - Techniques
- •Reflection
- •Access Modifiers
- •7.5.4. Conclusions
- •7.6. New Operator
- •7.6.1. PowerMock to the Rescue
- •7.6.2. Redesign and Inject
- •7.6.3. Refactor and Subclass
- •7.6.4. Partial Mocking
- •7.6.5. Conclusions
- •7.7. Capturing Arguments to Collaborators
- •7.8. Conclusions
- •7.9. Exercises
- •7.9.1. Testing Legacy Code
- •Part IV. Listen and Organize
- •Chapter 8. Getting Feedback
- •8.1. IDE Feedback
- •8.1.1. Eclipse Test Reports
- •8.1.2. IntelliJ IDEA Test Reports
- •8.1.3. Conclusion
- •8.2. JUnit Default Reports
- •8.3. Writing Custom Listeners
- •8.4. Readable Assertion Messages
- •8.4.1. Add a Custom Assertion Message
- •8.4.2. Implement the toString() Method
- •8.4.3. Use the Right Assertion Method
- •8.5. Logging in Tests
- •8.6. Debugging Tests
- •8.7. Notifying The Team
- •8.8. Conclusions
- •8.9. Exercises
- •8.9.1. Study Test Output
- •8.9.2. Enhance the Custom Rule
- •8.9.3. Custom Test Listener
- •8.9.4. Debugging Session
- •Chapter 9. Organization Of Tests
- •9.1. Package for Test Classes
- •9.2. Name Your Tests Consistently
- •9.2.1. Test Class Names
- •Splitting Up Long Test Classes
- •Test Class Per Feature
- •9.2.2. Test Method Names
- •9.2.3. Naming of Test-Double Variables
- •9.3. Comments in Tests
- •9.4. BDD: ‘Given’, ‘When’, ‘Then’
- •9.4.1. Testing BDD-Style
- •9.4.2. Mockito BDD-Style
- •9.5. Reducing Boilerplate Code
- •9.5.1. One-Liner Stubs
- •9.5.2. Mockito Annotations
- •9.6. Creating Complex Objects
- •9.6.1. Mummy Knows Best
- •9.6.2. Test Data Builder
- •9.6.3. Conclusions
- •9.7. Conclusions
- •9.8. Exercises
- •9.8.1. Test Fixture Setting
- •9.8.2. Test Data Builder
- •Part V. Make Them Better
- •Chapter 10. Maintainable Tests
- •10.1. Test Behaviour, not Methods
- •10.2. Complexity Leads to Bugs
- •10.3. Follow the Rules or Suffer
- •10.3.1. Real Life is Object-Oriented
- •10.3.2. The Non-Object-Oriented Approach
- •Do We Need Mocks?
- •10.3.3. The Object-Oriented Approach
- •10.3.4. How To Deal with Procedural Code?
- •10.3.5. Conclusions
- •10.4. Rewriting Tests when the Code Changes
- •10.4.1. Avoid Overspecified Tests
- •10.4.2. Are You Really Coding Test-First?
- •10.4.3. Conclusions
- •10.5. Things Too Simple To Break
- •10.6. Conclusions
- •10.7. Exercises
- •10.7.1. A Car is a Sports Car if …
- •10.7.2. Stack Test
- •Chapter 11. Test Quality
- •11.1. An Overview
- •11.2. Static Analysis Tools
- •11.3. Code Coverage
- •11.3.1. Line and Branch Coverage
- •11.3.2. Code Coverage Reports
- •11.3.3. The Devil is in the Details
- •11.3.4. How Much Code Coverage is Good Enough?
- •11.3.5. Conclusion
- •11.4. Mutation Testing
- •11.4.1. How does it Work?
- •11.4.2. Working with PIT
- •11.4.3. Conclusions
- •11.5. Code Reviews
- •11.5.1. A Three-Minute Test Code Review
- •Size Heuristics
- •But do They Run?
- •Check Code Coverage
- •Conclusions
- •11.5.2. Things to Look For
- •Easy to Understand
- •Documented
- •Are All the Important Scenarios Verified?
- •Run Them
- •Date Testing
- •11.5.3. Conclusions
- •11.6. Refactor Your Tests
- •11.6.1. Use Meaningful Names - Everywhere
- •11.6.2. Make It Understandable at a Glance
- •11.6.3. Make Irrelevant Data Clearly Visible
- •11.6.4. Do not Test Many Things at Once
- •11.6.5. Change Order of Methods
- •11.7. Conclusions
- •11.8. Exercises
- •11.8.1. Clean this Mess
- •Appendix A. Automated Tests
- •A.1. Wasting Your Time by not Writing Tests
- •A.1.1. And what about Human Testers?
- •A.1.2. One More Benefit: A Documentation that is Always Up-To-Date
- •A.2. When and Where Should Tests Run?
- •Appendix B. Running Unit Tests
- •B.1. Running Tests with Eclipse
- •B.1.1. Debugging Tests with Eclipse
- •B.2. Running Tests with IntelliJ IDEA
- •B.2.1. Debugging Tests with IntelliJ IDEA
- •B.3. Running Tests with Gradle
- •B.3.1. Using JUnit Listeners with Gradle
- •B.3.2. Adding JARs to Gradle’s Tests Classpath
- •B.4. Running Tests with Maven
- •B.4.1. Using JUnit Listeners and Reporters with Maven
- •B.4.2. Adding JARs to Maven’s Tests Classpath
- •Appendix C. Test Spy vs. Mock
- •C.1. Different Flow - and Who Asserts?
- •C.2. Stop with the First Error
- •C.3. Stubbing
- •C.4. Forgiveness
- •C.5. Different Threads or Containers
- •C.6. Conclusions
- •Appendix D. Where Should I Go Now?
- •Bibliography
- •Glossary
- •Index
- •Thank You!

Chapter 6. Things You Should Know
6.15. Exercises
In this section we have been discussing a number of aspects of advanced unit testing. Now it is time to practice some of these freshly acquired skills.
6.15.1. Design Test Cases: State Testing
A StringUtils class contains a reverse() method, with a signature as presented on Listing 6.51. List test cases, which would verify that this method really reverses the input String!
Listing 6.51. Signature of reverse Method
public String reverse(String s) { ... }
6.15.2. Design Test Cases: Interactions Testing
UserServiceImpl class contains the assignPassword() method, as presented on Listing 6.52. The method uses two collaborators to successfully perform its task: userDAO and securityService.
Listing 6.52. assignPassword() method
private UserDAO userDAO;
private SecurityService securityService;
public void assignPassword(User user) throws Exception {
String passwordMd5 = securityService.md5(user.getPassword()); user.setPassword(passwordMd5);
userDAO.updateUser(user);
}
Design the test cases for this method! Please note that this time you will have to think not only about the input parameters (user), but also about the values returned (or exceptions thrown!) by securityService
and userDAO.
6.15.3. Test Collections
Write a test for the trivial UserList class (shown in Listing 6.53), which will verify that:
•an empty list of users is returned if no users have been added,
•exactly one user is returned if only one has been added,
•two users are returned if two have been added.
To complete this task write the assertions using some tool or other that you have not made use of yet. See Section 6.12 for inspiration.
142

Chapter 6. Things You Should Know
Listing 6.53. Testing collections - exercise
public class UserList {
private List<User> users = new ArrayList<User>();
public List<User> getUsers() { return users;
}
public void addUser(User user) { users.add(user);
}
}
6.15.4. Time Testing
Listing 6.54 presents a single test-dependent method. Use the method described in Section 6.11 to test its business logic.
Listing 6.54. Time-dependent method - exercise
public class HelpDesk {
public final static int EOB_HOUR = 17;
public boolean willHandleIssue(Issue issue) { Calendar cal = Calendar.getInstance();
int dayOfWeek = cal.get(Calendar.DAY_OF_WEEK);
if (Calendar.SUNDAY == dayOfWeek || Calendar.SATURDAY == dayOfWeek) { return false;
}
if (Calendar.FRIDAY == dayOfWeek) {
int hour = cal.get(Calendar.HOUR_OF_DAY); if (hour > EOB_HOUR) {
return false;
}
}
return true;
}
}
6.15.5. Redesign of the TimeProvider class
Let’s recall the Hello class after we had introduced a timeProvider collaborator to it (see the Listing 6.37 in the Section 6.11). The current version of this class fetches some data from the timeProvider (i.e. the current hour) and then makes some decision based on this returned data. This is not such a terrible thing, but it does break one important rule of good design: that we should preferably ask for results of calculations rather than data. We can fix it by changing the TimeProvider interface so that it answers the "is it morning?" question. After this, rewrite the test for the Hello class, and see if that has become any simpler!
In addition, write the implementation (with tests, of course!) of the TimeProvider interface! See how the test cases originally aimed at the Hello class now relate to the class implementing the TimeProvider interface!
143

Chapter 6. Things You Should Know
6.15.6. Write a Custom Matcher
Write a custom matcher - using the library of your choice - so that you are then in a position to write nicely readable assertions for the given OperatingSystem class, should you wish to:
Listing 6.55. The OperatingSystem class
public class OperatingSystem {
private int nbOfBits;
private String name;
private String version;
private int releaseYear;
// getters and setters omitted
}
An example of what you should achieve is presented below (written with FEST, but you can use Hamcrest to achieve a similar effect, if it suits you better):
Listing 6.56. Test of the OperatingSystem class
@Test
public class OperatingSystemTest {
private OperatingSystem os;
public void testUsingMatcher() { OperatingSystem min9 = new Mindows9();
assertThat(min9).is128bit().wasReleasedIn(2013).hasVersion(9);
}
}
Make sure you take care of any failed assertion messages in such a way that the cause of a failure is explicitly given.
Write some tests using your matcher, and decide whether it was worth the trouble of implementing it.
6.15.7. Preserve System Properties During Tests
Imagine you are testing code which modifies system properties30. Based on what you have learned in Section 6.8.2, write a custom rule which would preserve them. For example, if we assume that the system property with the key myKey has the value myValue before each test is executed, then it should also have an identical value after each test has finished, even if it was modified by the test code.
6.15.8. Enhance the RetryTestRule
In Section 6.8.2 we wrote a simple custom rule which allowed us to retry a failed test. As an exercise, please enhance it in the following way:
30http://docs.oracle.com/javase/tutorial/essential/environment/sysprop.html
144

Chapter 6. Things You Should Know
•this rule should affect only tests marked with the @Retry annotation31,
•this rule should be configurable so that we can decide, for each test method, whether it should be rerun in cases of failure, and how many times it should be rerun after the test is considered to have failed.
The following provides an example of the enhanced RetryTestRule in action:
Listing 6.57. Enhanced RetryTestRule in action
public class EnhancedRetryTest {
@Rule
public RetryTestEnhancedRule retryTestRule = new RetryTestEnhancedRule();
static int firstTestCounter = 0; static int secondTestCounter = 0; static int thirdTestCounter = 0;
@Test
@RetryTest(retryNb = 2)
public void shouldFailOnSecondAttempt() { firstTestCounter++;
Assert.fail("failing " + firstTestCounter);
}
@Test
@RetryTest(retryNb = 3)
public void shouldFailOnThirdAttempt() { secondTestCounter++;
Assert.fail("failing " + secondTestCounter);
}
@Test
public void shouldNotBeRerun() { thirdTestCounter++;
Assert.fail("failing " + thirdTestCounter);
}
}
This test should be rerun once. This test should be rerun twice.
This test should not be rerun, because it is not marked with the @RetryTest annotation.
6.15.9. Make an ID Generator Bulletproof
As an additional exercise, please provide the implementation for an ID generator like that discussed in Section 6.10, that will pass the tests shown in Listing 6.33.
31http://docs.oracle.com/javase/tutorial/java/javaOO/annotations.html
145