
- •В. Р. Зайлалова учебное пособие по курсу «химия нефти и газа»
- •Введение
- •1. Происхождение нефти
- •2. Элементарный состав нефти
- •3. Фракционный состав нефти
- •3.1. Детонационная стойкость горючего
- •3.2. Переработка углеводородного сырья
- •3.2.1. Переработка каменного угля
- •3.2.2. Перспективы развития энергетики
- •4. Групповой углеводородный состав нефти. Классификация нефти
- •5. Молекулярный вес
- •6. Физические свойства нефти
- •6.1. Плотность
- •6.2. Вязкость
- •6.3. Температурные переходы и агрегатные превращения
- •6.4. Тепловые свойства
- •6.5. Оптические свойства
- •6.6. Электрические свойства
- •7. Фазовое равновесие в системе «нефть — газ»
- •8. Классификация углеводородов
- •8.1. Предельные (насыщенные) углеводороды. Алканы (парафины)
- •Физические свойства
- •Химические свойства
- •Способы получения
- •8.2. Предельные углеводороды. Циклоалканы
- •Физические свойства
- •Химические свойства
- •Способы получения
- •8.3. Непредельные (ненасыщенные) углеводороды. Алкены (этиленовые углеводороды)
- •Физические свойства
- •Химические свойства
- •Способы получения
- •8.4. Непредельные углеводороды. Алкадиены
- •Химические свойства
- •Способы получения
- •8.5. Непредельные углеводороды. Алкины (ацетиленовые углеводороды)
- •Физические свойства
- •Химические свойства
- •Способы получения
- •8.6. Ароматические углеводороды. Бензол и его гомологи
- •Химические свойства
- •Свойства бензола
- •Свойства гомологов бензола
- •Способы получения
- •9. Неуглеводородные соединения нефти
- •9.1. Кислородные соединения
- •Азотистые соединения
- •Сернистые соединения
- •10. Смолистые вещества
- •11. Минеральные компоненты нефти
- •12. Методы выделения компонентов
- •12.1. Перегонка
- •12.2 Азеотропная и экстрактивная ректификация, экстракция, абсорбция
- •И селективность растворителей при 60°с
- •12.3. Адсорбция
- •12.4. Кристаллизация
- •12.5. Диффузионные методы разделения углеводородов
- •13. Природные и попутные газы. Применение газа
- •13.1 Природные газы
- •Попутные (нефтяные) газы
- •Применение газа
- •Термические превращения углеводородов нефти
- •14.1. Термодинамика процесса
- •14.2. Кинетика и механизм процесса
- •Энергия связи с—с, кДж/моль: 335; 322; 314; 310; 314; 322; 335
- •14.3. Термические превращения углеводородов в газовой фазе
- •Превращения алканов
- •14.3.2. Превращения циклоалканов
- •14.3.3. Превращения алкенов
- •Суммарную реакцию можно записать уравнением:
- •14.3.4. Превращения алкадиенов и алкинов
- •14.3.5. Превращения аренов
- •15. Термокаталитические превращения
- •15.1. Механизм действия катализаторов окислительно-восстановительного типа
- •15.2. Кислотный катализ
- •15.3. Реакции карбкатионов
- •15.4. Каталитический крекинг
- •15.4.1. Превращения алканов
- •15.4.2. Превращение циклоалканов
- •15.4.3. Превращение алкенов
- •15.4.4. Превращение аренов
- •15.4.5. Катализаторы каталитического крекинга
- •15.4.6. Каталитический крекинг в промышленности
- •15.5. Каталитический риформинг
- •15.5.1. Химические основы процесса
- •15.5.2. Катализаторы риформинга
- •15.5.3. Каталитический риформинг в промышленности
- •16. Гидрогенизация в нефтепереработке
- •16.1. Классификация процессов
- •16.2. Классификация каталитических реакций с водородом
- •16.3. Термодинамика и катализаторы гидрирования
- •Список литературы
- •Содержание
15.5.1. Химические основы процесса
Алканы. При риформинге подвергаются изомеризации, дегидроциклизации и гидрокрекингу.
Изомеризация алканов протекает по карбкатионному механизму. В условиях процесса риформинга изомеризация алканов приводит к образованию малоразветвленных изомеров, обладающих более высокими октановыми числами, чем нормальные углеводороды.
Дегидроциклизация — одна из важнейших реакций риформинга, заключающаяся в превращении алканов в арены. В результате увеличивается октановое число бензина:
CnH2n+2
R
+4H2
Дегидроциклизация протекает с поглощением тепла (251 ± 17 кДж/моль), поэтому константа равновесия реакции возрастает с повышением температуры. Давление сдвигает равновесие реакции влево — в сторону гидрирования аренов. Однако на практике для уменьшения отложений кокса на катализаторе процесс проводят под повышенным давлением водорода. Скорость дегидроциклизации возрастает с увеличением длины цепи алканов.
Механизм ароматизации алканов окончательно не ясен. Считают, что на катализаторах окислительно-восстановительного типа реакция протекает по схеме: алканциклоалканарен.
Однако в отсутствие кислотных активных центров реакция протекает медленно. На бифункциональном катализаторе, характеризующемся наличием как окислительно-восстановительных, так и кислотных активных центров, возможна другая схема превращений: дегидрирование нормального алкана (на металле), образование карбкатиона (с участием кислотных активных центров), циклизация иона, потеря протона с выделением циклоалкена, дегидрирование циклоалкена (на металле); или в общем виде: алкан алкен циклоалкен арен. При дегидроциклизации алканов образуются все теоретически возможные изомерные арены
|
|
CH3CH2CH2CH(CH3)CH2CH2CH3 | |
|
Если исходный алкан содержит менее шести атомов углерода в основной цепи, то ароматизации предшествует изомеризация алкана с удлинением основной цепи:
СН3СН(СН3)СН(СН3)СН2СН3
СН3СН2СН(СН3)СН2СН2СН3
4Н2
Алканы, содержащие 10 и более атомов углерода, образуют арены с конденсированными кольцами. Декан, например, превращается в нафталин:
Аналогичным образом арены с достаточно длинными боковыми цепями могут замыкать дополнительные циклы:
Гидрокрекинг дает низшие алканы:
Н2
СН3СН2СН2СН2СН3
+ СН4
CH3CH2CH2CH2CH2CH3
СН3СН2СН2СН3
+ СН3СН3
2СН3СН2СН3
Эту реакцию иногда называют деструктивным гидрированием. Сначала, по-видимому, происходит крекинг на кислотных центрах катализатора, а затем гидрирование образовавшихся алкенов на окислительно-восстановительных центрах металла. Суммарный тепловой эффект реакции положителен.
Циклоалканы. В условиях риформинга подвергаются дегидрированию до аренов (1), изомеризации (2), гидрированию с разрывом кольца (3) и гидрокрекингу (4):
Реакции гидрирования — дегидрирования относятся к типу окислительно-восстановительных и катализируются металлами и их соединениями, ускоряющими перенос электрона. Изомеризация протекает по ионному механизму и катализируется кислотами и кислыми окислами.
Соотношение между реакциями (1) — (4) устанавливается в зависимости от термодинамических и кинетических факторов, а также зависит от активности катализатора. Наиболее желательной в процессе риформинга является ароматизация циклоалканов (реакция 1). Выход аренов возрастает с повышением температуры и снижением давления. При высокой кислотной активности катализатора возрастает роль изомеризации (2), ведущей к превращению циклогексана в циклопентан.
Алкилциклопентаны подвергаются при риформинге тем же реакциям, что и циклогексаны (1—4), однако скорость ароматизации (1) значительно ниже, а выход продуктов гидрокрекинга (4) выше. Ароматизации алкилциклопентанов предшествует изомеризация в циклогексаны. Реакция протекает по карбкатионному механизму:
Этилциклопентан превращается в ароматический углеводород легче, чем метилциклопентан:
Это объясняется тем, что в первом случае третичный карбкатион изомеризуется в первичный, а во втором — во вторичный, что энергетически гораздо выгоднее.
Циклоалканы с числом углеродных атомов более 10 дают в условиях риформинга значительный выход нафталинов и других конденсированных аренов.
Арены. Незамещенные соединения в условиях процесса риформинга устойчивы. Алкилированные арены подвергаются изомеризации по положению заместителей, диспропорционированию и деалкилированию.
Толуол подвергается деметилированию и диспропорционированию метильных групп с образованием бензола и ксилолов.
Ксилолы, главным образом, подвергаются изомеризации, которая, по-видимому, протекает по карбкатионному механизму и дает равновесную смесь о-, м- и n-изомеров, а также этилбензола.
Арены с более длинными боковыми цепями деалкилируются по схеме:
Н2
C3H7+ C3H6 C3H8
Н+
В результате образуются незамещенный арен и алкан.
Соединения, содержащие гетероатомы N, S, О. Гидрируются с образованием NH3, H2S и Н2О и соответствующих углеводородов. Присутствие в сырье риформинга гетероатомных соединений нежелательно. Они быстро отравляют платиновый катализатор. Поэтому сырье, содержащее выше 0,05–0,07% серы и более 10-14% азота, предварительно подвергают гидроочистке.
Обзор основных направлений превращения углеводородов различных классов показывает, что в условиях риформинга происходят изомеризация и ароматизация бензиновых фракций. По скорости протекания различные реакции риформинга можно разделить на две группы: к быстроидущим реакциям относятся дегидрирование циклоалканов, изомеризация алканов и гидрокрекинг тяжелых углеводородов; значительно более медленными являются дегидроциклизация алканов и деалкилирование аренов.