
- •В. Р. Зайлалова учебное пособие по курсу «химия нефти и газа»
- •Введение
- •1. Происхождение нефти
- •2. Элементарный состав нефти
- •3. Фракционный состав нефти
- •3.1. Детонационная стойкость горючего
- •3.2. Переработка углеводородного сырья
- •3.2.1. Переработка каменного угля
- •3.2.2. Перспективы развития энергетики
- •4. Групповой углеводородный состав нефти. Классификация нефти
- •5. Молекулярный вес
- •6. Физические свойства нефти
- •6.1. Плотность
- •6.2. Вязкость
- •6.3. Температурные переходы и агрегатные превращения
- •6.4. Тепловые свойства
- •6.5. Оптические свойства
- •6.6. Электрические свойства
- •7. Фазовое равновесие в системе «нефть — газ»
- •8. Классификация углеводородов
- •8.1. Предельные (насыщенные) углеводороды. Алканы (парафины)
- •Физические свойства
- •Химические свойства
- •Способы получения
- •8.2. Предельные углеводороды. Циклоалканы
- •Физические свойства
- •Химические свойства
- •Способы получения
- •8.3. Непредельные (ненасыщенные) углеводороды. Алкены (этиленовые углеводороды)
- •Физические свойства
- •Химические свойства
- •Способы получения
- •8.4. Непредельные углеводороды. Алкадиены
- •Химические свойства
- •Способы получения
- •8.5. Непредельные углеводороды. Алкины (ацетиленовые углеводороды)
- •Физические свойства
- •Химические свойства
- •Способы получения
- •8.6. Ароматические углеводороды. Бензол и его гомологи
- •Химические свойства
- •Свойства бензола
- •Свойства гомологов бензола
- •Способы получения
- •9. Неуглеводородные соединения нефти
- •9.1. Кислородные соединения
- •Азотистые соединения
- •Сернистые соединения
- •10. Смолистые вещества
- •11. Минеральные компоненты нефти
- •12. Методы выделения компонентов
- •12.1. Перегонка
- •12.2 Азеотропная и экстрактивная ректификация, экстракция, абсорбция
- •И селективность растворителей при 60°с
- •12.3. Адсорбция
- •12.4. Кристаллизация
- •12.5. Диффузионные методы разделения углеводородов
- •13. Природные и попутные газы. Применение газа
- •13.1 Природные газы
- •Попутные (нефтяные) газы
- •Применение газа
- •Термические превращения углеводородов нефти
- •14.1. Термодинамика процесса
- •14.2. Кинетика и механизм процесса
- •Энергия связи с—с, кДж/моль: 335; 322; 314; 310; 314; 322; 335
- •14.3. Термические превращения углеводородов в газовой фазе
- •Превращения алканов
- •14.3.2. Превращения циклоалканов
- •14.3.3. Превращения алкенов
- •Суммарную реакцию можно записать уравнением:
- •14.3.4. Превращения алкадиенов и алкинов
- •14.3.5. Превращения аренов
- •15. Термокаталитические превращения
- •15.1. Механизм действия катализаторов окислительно-восстановительного типа
- •15.2. Кислотный катализ
- •15.3. Реакции карбкатионов
- •15.4. Каталитический крекинг
- •15.4.1. Превращения алканов
- •15.4.2. Превращение циклоалканов
- •15.4.3. Превращение алкенов
- •15.4.4. Превращение аренов
- •15.4.5. Катализаторы каталитического крекинга
- •15.4.6. Каталитический крекинг в промышленности
- •15.5. Каталитический риформинг
- •15.5.1. Химические основы процесса
- •15.5.2. Катализаторы риформинга
- •15.5.3. Каталитический риформинг в промышленности
- •16. Гидрогенизация в нефтепереработке
- •16.1. Классификация процессов
- •16.2. Классификация каталитических реакций с водородом
- •16.3. Термодинамика и катализаторы гидрирования
- •Список литературы
- •Содержание
13. Природные и попутные газы. Применение газа
Газ может находиться в природе в залежах трех типов: газовых, газонефтяных и газоконденсатных.
В залежах первого типа — газовых — газ образует огромные естественные подземные скопления, не имеющие непосредственной связи с нефтяными месторождениями.
В залежах второго типа — газонефтяных — газ сопровождает нефть или нефть сопровождает газ. Газонефтяные залежи, как указано выше, бывают двух типов: нефтяные с газовой шапкой (в них основной объем занимает нефть) и газовые с нефтяной оторочкой (основной объем занимает газ). Каждая газонефтяная залежь характеризуется газовым фактором — количеством газа (в м3), приходящимся на 1000 кг нефти.
Газоконденсатные залежи характеризуются высоким давлением (более 3–107 Па) и высокими температурами (80–100°С и выше) в пласте. В этих условиях в газ переходят углеводороды С5 и выше, а при снижении давления происходит конденсация этих углеводородов — процесс обратной конденсации.
Газы всех рассмотренных залежей называются природными газами, в отличие от попутных нефтяных газов, растворенных в нефти и выделяющихся из нее при добыче.
13.1 Природные газы
Природные газы состоят в основном из метана. Наряду с метаном в них обычно содержатся этан, пропан, бутан, небольшое количество пентана и высших гомологов и незначительные количества неуглеводородных компонентов: углекислого газа, азота, сероводорода и инертных газов (аргона, гелия и др.).
Содержание метана в природном газе некоторых месторождений может достигать 99,3%, т. е. это — практически чистый метан, в других месторождениях оно значительно меньше — 76%. На долю гомологов метана в природном газе приходится 4–5%. Как правило, этана около 2–4%, пропана 0,1–3%, бутана обычно не более 1% и высших гомологов — доли процента.
Углекислый газ, который обычно присутствует во всех природных газах, является одним из главных продуктов превращения в природе органического исходного вещества углеводородов. Его содержание в природном газе ниже, чем можно было бы ожидать, исходя из механизма химических превращений органических остатков в природе, так как углекислый газ — активный компонент, он переходит в пластовую воду, образуя растворы бикарбонатов. Как правило, содержание углекислого газа не превышает 2,5%. Содержание азота, также обычно присутствующего в природных, связано либо с попаданием атмосферного воздуха, либо с реакциями распада белков живых организмов. Количество азота обычно выше в тех случаях, когда образование газового месторождения происходило в известняковых и гипсовых породах.
Особое место в составе некоторых природных газов занимает гелий. В природе гелий встречается часто (в воздухе, природном газе и др.), но в ограниченных количествах. Хотя содержание гелия в природном газе невелико (максимально до 1–1,2%), выделение его оказывается выгодным из-за большого дефицита этого газа, а также благодаря большому объему добычи природного газа.
Сероводород, как правило, отсутствует в газовых залежах. Исключение составляет, например, Усть-Вилюйская залежь, где содержание H2S достигает 2,5%, и некоторые другие. По-видимому, наличие сероводорода в газе связано с составом вмещающих пород. Замечено, что газ, находящийся в контакте с сульфатами (гипсом и др.) или сульфитами (пирит), содержит относительно больше сероводорода.
Природные газы, содержащие в основном метан и имеющие очень незначительное содержание гомологов С5 и выше, относят к сухим или бедным газам. К сухим относится подавляющее большинство газов, добываемых из газовых залежей. Газ газоконденсатных залежей отличается меньшим содержанием метана и повышенным содержанием его гомологов. Такие газы называются жирными или богатыми. В газах газоконденсатных залежей, помимо легких углеводородов, содержатся и высококипящие гомологи, которые при снижении давления выделяются в жидком виде (конденсат). В зависимости от глубины скважины и давления на забое в газообразном состоянии могут находиться углеводороды, кипящие до 300–400°С.
Газ газоконденсатных залежей характеризуется содержанием выпавшего конденсата (в см3 на 1 м3 газа).
Образование газоконденсатных залежей связано с тем, что при больших давлениях происходит явление обратного растворения — обратной конденсации нефти в сжатом газе. При давлениях около 75106 Па нефть растворяется в сжатом этане и пропане, плотность которых при этом значительно превышает плотность нефти.
Состав конденсата зависит от режима эксплуатации скважины. Так, при поддержании постоянного пластового давления качество конденсата стабильно, но при уменьшении давления в пласте состав и количество конденсата изменяются.
Состав стабильных конденсатов некоторых месторождений хорошо изучен. Конец кипения их обычно не выше 300°С. По групповому составу: большую часть составляют метановые углеводороды, несколько меньше — нафтеновые и еще меньше — ароматические. Состав газов газоконденсатных месторождений после отделения конденсата близок к составу сухих газов. Плотность природного газа относительно воздуха (плотность воздуха принята за единицу) колеблется от 0,560 до 0,650. Теплота сгорания около 37700–54600 Дж/кг.