
- •В. Р. Зайлалова учебное пособие по курсу «химия нефти и газа»
- •Введение
- •1. Происхождение нефти
- •2. Элементарный состав нефти
- •3. Фракционный состав нефти
- •3.1. Детонационная стойкость горючего
- •3.2. Переработка углеводородного сырья
- •3.2.1. Переработка каменного угля
- •3.2.2. Перспективы развития энергетики
- •4. Групповой углеводородный состав нефти. Классификация нефти
- •5. Молекулярный вес
- •6. Физические свойства нефти
- •6.1. Плотность
- •6.2. Вязкость
- •6.3. Температурные переходы и агрегатные превращения
- •6.4. Тепловые свойства
- •6.5. Оптические свойства
- •6.6. Электрические свойства
- •7. Фазовое равновесие в системе «нефть — газ»
- •8. Классификация углеводородов
- •8.1. Предельные (насыщенные) углеводороды. Алканы (парафины)
- •Физические свойства
- •Химические свойства
- •Способы получения
- •8.2. Предельные углеводороды. Циклоалканы
- •Физические свойства
- •Химические свойства
- •Способы получения
- •8.3. Непредельные (ненасыщенные) углеводороды. Алкены (этиленовые углеводороды)
- •Физические свойства
- •Химические свойства
- •Способы получения
- •8.4. Непредельные углеводороды. Алкадиены
- •Химические свойства
- •Способы получения
- •8.5. Непредельные углеводороды. Алкины (ацетиленовые углеводороды)
- •Физические свойства
- •Химические свойства
- •Способы получения
- •8.6. Ароматические углеводороды. Бензол и его гомологи
- •Химические свойства
- •Свойства бензола
- •Свойства гомологов бензола
- •Способы получения
- •9. Неуглеводородные соединения нефти
- •9.1. Кислородные соединения
- •Азотистые соединения
- •Сернистые соединения
- •10. Смолистые вещества
- •11. Минеральные компоненты нефти
- •12. Методы выделения компонентов
- •12.1. Перегонка
- •12.2 Азеотропная и экстрактивная ректификация, экстракция, абсорбция
- •И селективность растворителей при 60°с
- •12.3. Адсорбция
- •12.4. Кристаллизация
- •12.5. Диффузионные методы разделения углеводородов
- •13. Природные и попутные газы. Применение газа
- •13.1 Природные газы
- •Попутные (нефтяные) газы
- •Применение газа
- •Термические превращения углеводородов нефти
- •14.1. Термодинамика процесса
- •14.2. Кинетика и механизм процесса
- •Энергия связи с—с, кДж/моль: 335; 322; 314; 310; 314; 322; 335
- •14.3. Термические превращения углеводородов в газовой фазе
- •Превращения алканов
- •14.3.2. Превращения циклоалканов
- •14.3.3. Превращения алкенов
- •Суммарную реакцию можно записать уравнением:
- •14.3.4. Превращения алкадиенов и алкинов
- •14.3.5. Превращения аренов
- •15. Термокаталитические превращения
- •15.1. Механизм действия катализаторов окислительно-восстановительного типа
- •15.2. Кислотный катализ
- •15.3. Реакции карбкатионов
- •15.4. Каталитический крекинг
- •15.4.1. Превращения алканов
- •15.4.2. Превращение циклоалканов
- •15.4.3. Превращение алкенов
- •15.4.4. Превращение аренов
- •15.4.5. Катализаторы каталитического крекинга
- •15.4.6. Каталитический крекинг в промышленности
- •15.5. Каталитический риформинг
- •15.5.1. Химические основы процесса
- •15.5.2. Катализаторы риформинга
- •15.5.3. Каталитический риформинг в промышленности
- •16. Гидрогенизация в нефтепереработке
- •16.1. Классификация процессов
- •16.2. Классификация каталитических реакций с водородом
- •16.3. Термодинамика и катализаторы гидрирования
- •Список литературы
- •Содержание
2. Элементарный состав нефти
Представляя собой жидкость более легкую, чем вода, нефть разных мест, иногда даже и соседних, различна по многим свойствам: цвету, плотности, летучести, температуре кипения. Однако любая нефть — это жидкость почти нерастворимая в воде и по элементарному составу содержащая преимущественно углеводороды с подмесью небольшого количества кислородных, сернистых, азотистых и минеральных соединений, что видно не только по элементарному составу, но и по всем свойствам углеводородов. В бакинской (апшеронской) нефти Марковников и Оглоблин нашли от 86,6 до 87,0% углерода и от 13,1 до 13,4% водорода. В пенсильванской нефти С. К. Девилль нашел 83–84% углерода, 13,7–14,7% водорода, в рангунской (в Бирме) 83,8% углерода и 12,7% водорода, в огайской Мабери нашел только 83,6–85,8% углерода и 13,05–14,6% водорода. Недостающее до 100% отвечает содержанию кислорода, серы, азота, воды и минеральных подмесей. Количество серы в некоторых сортах нефти едва составляет несколько сотых % (например, в обыкновенной зеленой бакинской нефти всего 0,06%). Азота всегда мало, обыкновенно меньше 0,2%. Минеральных подмесей (золы) еще меньше, и пока не известен ни один случай, когда количество их доходило бы до 0,1%. Поэтому за вычетом суммы всех других составных начал в сырой нефти надо принимать от 1 до 4% кислорода.
3. Фракционный состав нефти
Нефть представляет собой сложную смесь веществ — преимущественно жидких углеводородов. Разделение сложных смесей на более простые или на индивидуальные компоненты называется фракционированием. Методы, применяемые для фракционирования нефти, основаны на различии физических и химических свойств разделяемых компонентов. При исследовании и переработке нефти применяются самые разнообразные методы разделения: перегонка при атмосферном давлении под вакуумом, азеотропная и другие виды перегонок, ректификация, дегазация (физическая стабилизация), экстракция, кристаллизация из растворов, хроматография и др.
Наиболее распространенные методы фракционирования — это перегонка (дистилляция) и ректификация. Перегонку производят на нефтеперерабатывающих заводах после отделения попутных газов.
Она основана на разнице температур кипения углеводородов, входящих в состав нефти. Поскольку нефть содержит сотни различных веществ, многие из которых имеют близкие температуры кипения, выделение индивидуальных углеводородов практически невозможно. Поэтому перегонкой нефть разделяют на фракции, которые кипят в довольно широком интервале температур.
1 — колба; 2 — термометр; 3 — водяной холодильник; 4 — приемник
Рисунок 1 — Схема лабораторной установки для перегонки нефти
На рисунке 1 приведена схема лабораторной установки для перегонки нефти. Нефть нагревают в колбе (1). Вначале начинают перегоняться углеводороды с более низкой температурой кипения. Пары этих углеводородов поступают в холодильник (3), где конденсируются при охлаждении водой. Жидкие углеводороды собираются в колбе-приемнике (4). Повышая температуру перегонки, можно перегнать углеводороды с более высокой температурой кипения. Меняя приемники, можно разделить нефть на несколько фракций, кипящих в определенном интервале температур. Контроль за температурой перегонки осуществляется с помощью термометра (2).
В промышленности разделение нефти происходит на непрерывно действующих ректификационных колоннах (рис. 2, а, б). Ректификационная колонна — это огромный стальной цилиндр высотой 50–60 м, диаметром до 3 м. Внутри цилиндра на некотором расстоянии друг от друга располагаются горизонтальные перегородки (тарелки) с большим числом отверстий. Нагретая до 300–350°С нефть подается в нижнюю часть ректификационной колонны.
а — общая схема ректификационной колонны (разрез); б — схема устройства тарелок: 1 — переточная трубка; 2 — колпачок; 3 — тарелка; 4 — патрубок
Рисунок 2 — Ректификационная колонна
Пары нефти через отверстия в тарелках поднимаются вверх, постепенно охлаждаясь. Наиболее легколетучие углеводороды (пары) поднимаются до самого верха колонны и сжижаются на верхних тарелках. Менее летучие сжижаются ниже, поднявшись на незначительную высоту. Образовавшиеся жидкие фракции выводятся с тарелок из колонны.
Перегонкой при обычном давлении нефть разделяют на четыре фракции: бензиновую (30–180°С), керосиновую (120–315 °С), дизельную (180–350°С) и мазут (остаток после перегонки).
При более тщательной перегонке каждую из этих фракций можно разделить еще на несколько более узких фракций (фракции, кипящие в меньшем интервале температур). Так, из бензиновой фракции (смесь углеводородов С5—С12) можно выделить петролейный эфир (40–70°С), собственно бензин (70–120°С) и лигроин (120–180°С). В состав петролейного эфира входят наиболее легкокипящие углеводороды — пентан и гексан. Петролейный эфир — прекрасный растворитель жиров и смол. Бензин содержит предельные углеводороды неразветвленного строения от пентанов до деканов, циклоалканы (циклопентан и циклогексан) и бензол. Бензин применяется в качестве горючего для авиационных и автомобильных двигателей внутреннего сгорания.