
- •Министерство образования и науки украины
- •Тема 1. Введение. Полупроводники. P-n-переход Введение
- •История развития электроники
- •Электропроводность полупроводников (собственная и примесная проводимость)
- •P-n-переход в состоянии термодинамического равновесия
- •P-n-переход под воздействием внешнего напряжения
- •Тема 2. Полупроводниковые диоды
- •Выпрямительные диоды
- •Полупроводниковые стабилитроны
- •Варикапы
- •Тема 3. Транзисторы. Устройство и принцип
- •Устройство биполярного транзистора
- •Принцип действия и схемы включения биполярного транзистора
- •Тема 4. Характеристики и параметры
- •Вольт-амперные характеристики биполярных транзисторов
- •H-параметры транзистора
- •Тема 5. Полевые транзисторы
- •Тема 6. Биполярные транзисторы с изолированным затвором (igbt-транзисторы)
- •Тема 7. Тиристоры
- •Тема 8. Интегральные микросхемы (имс)
- •Элементы и компоненты имс
- •Тема 9. Общие сведения об усилителях и их классификация. Основные параметры и характеристики усилителей
- •Основные технические характеристики усилителей
- •Вопросы согласования усилителей
- •Тема 10. Каскады предварительного усиления Практические схемы ук с оэ, об и ок. Составной эмиттерный повторитель
- •Тема 11. Усилители постоянного тока
- •Дифференциальные усилители
- •Тема 12. Классы усиления
- •Тема 13. Обратные связи в усилителях Принципы обратной связи
- •Виды обратной связи
- •Тема 14. Операционные усилители Общие сведения
- •Основные схемы включения оу
- •Характеристики оу
- •Тема 15. Общие сведения об импульсных устройствах
- •Тема 16. Транзисторный ключ как формирователь импульса
- •Содержание
Тема 6. Биполярные транзисторы с изолированным затвором (igbt-транзисторы)
В настоящее время основными полностью управляемыми приборами силовой электроники в области коммутируемых токов до 50 А и напряжений до 500 В являются биполярные транзисторы и идущие им на смену МДП-транзисторы. Нишу высоковольтных силовых приборов с большими уровнями токов и напряжениями до единиц киловольт заняли биполярные транзисторы с изолированным затвором (IGBT – Insulated Gate Bipolar Transistor). Помимо области высоковольтных силовых преобразователей на мощности от единиц киловатт, IGBT-транзисторы используются в бытовой технике для управления относительно маломощными приводами с широким диапазоном регулирования скорости вращения. Так, IGBT нашли применение в стиральных машинах и инверторных кондиционерах. Их также с успехом применяют в качестве высоковольтных ключей для электронного зажигания автомобилей. Эти транзисторы с улучшенной характеристикой переключения широко используются в импульсных блоках питания телекоммуникационных и серверных систем.
IGBT-транзистор сочетает в себе два транзистора в одной полупроводниковой структуре: биполярный транзистор p-n-p- типа управляется от сравнительно низковольтного МДП-транзистора с индуцированным каналом. Условные графические обозначения IGBT-транзисторов, используемые различными производителями на принципиальных схемах электронных устройств, приведены на рис. 27. Эквивалентная схема IGBT-транзистора представлена на рис. 28.
|
|
|
|
Рис. 27. Условные графические обозначения IGBT-транзисторов |
Рис. 28. Эквивалентная схема IGBT-транзистора |
Таким образом, IGBT-транзистор имеет три внешних вывода: эмиттер, коллектор и затвор. Соединения эмиттера и истока, базы и стока являются внутренними. Сочетание двух приборов в одной структуре позволило объединить достоинства полевых и биполярных транзисторов: высокое входное сопротивление с высокой токовой нагрузкой и малым сопротивлением во включенном состоянии. По быстродействию силовые IGBT-транзисторы пока уступают МДП-транзисторам, но превосходят биполярные. Структуры IGBT-транзисторов показаны на рис. 29.
| |
а)
|
б)
|
Рис. 29. Структуры IGBT-транзисторов: а – обычного (планарного); б – выполненного по технологии с вертикальным затвором (trench-gate technology) |
Процесс
включения IGBT-транзистора можно представить
в виде двух этапов: после подачи
положительного напряжения на затвор
формируется канал n-типа между истоком
и стоком (на рис. 29 показан пунктиром) и
происходит открытие МДП-транзистора,
а движение дырок приводит к открытию
биполярного транзистора и возникновению
тока от эмиттера к коллектору. Усилительные
свойства IGBT-транзистора характеризуются
крутизной
,
которая определяется усилительными
свойствами МДП- и биполярного транзисторов
в структуре IGBT. Соответственно, значение
крутизны для IGBT является более высоким
в сравнении с биполярными и МДП-транзисторами.
Типовые выходные характеристики
IGBT-транзистора приведены на рис. 30.
Внастоящее время IGBT-транзисторы выпускаются
в виде модулей:
1) в прямоугольном корпусе с односторонним прижимом и охлаждением ("Mitsubishi", "Siemens", "Semikron");
2) в таблеточном исполнении с двухсторонним охлаждением ("Toshiba").
Современные IGBT-модули находят сегодня широкое применение при создании неуправляемых и управляемых выпрямителей, автономных инверторов для питания двигателей постоянного и переменного тока средней мощности, преобразователей индукционного нагрева, сварочных аппаратов, источников бесперебойного питания, бытовой и студийной техники. Особую роль IGBT-модули играют в развитии железнодорожного транспорта. Применение этих перспективных приборов в тяговом преобразователе позволило повысить частоту переключения, упростить схему управления, минимизировать загрузку сети гармониками и обеспечить предельно низкие потери в обмотках трансформатора и дросселей. Схема включения IGBT-модуля фирмы Hitachi приведена на рис. 31.
|
Рис. 31. Схема включения IGBT-модуля фирмы Hitachi |
Затвор IGBT-транзисторов электрически изолирован от канала очень тонким слоем диэлектрика и легко может быть поврежден при неправильной эксплуатации. Для защиты IGBT-транзисторов от коммутационных перенапряжений в цепи коллектор-эмиттер применяют защитные (снабберные) RC- и RCD-цепи, установленные непосредственно на силовых выводах. Следует отметить, что IGBT-транзисторы не так чувствительны к электростатическому пробою, как МОП-транзисторы, поскольку входная емкость мощных IGBT-транзисторов значительно больше и может вместить в себя большую энергию, прежде чем разряд вызовет необратимый пробой затвора. Однако при транспортировке и хранении этих приборов затвор и эмиттерный вывод должны быть закорочены токопроводящими перемычками, которые не должны сниматься до момента подключения транзистора в схему. Производить монтажные работы с IGBT-транзисторами необходимо только при наличии антистатического браслета. Все инструменты и оснастка, с которыми может контактировать модуль, должны быть заземлены. Для защиты затвора от статического пробоя непосредственно в схеме необходимо подключение параллельно цепи затвор-эмиттер резистора сопротивлением 10÷20 кОм.