Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЛАБ.раб. оптика 35, 41.docx
Скачиваний:
12
Добавлен:
04.03.2016
Размер:
80.34 Кб
Скачать

ЛАБОРАТОРНАЯ РАБОТА 35

Определение длины световой волны с помощью дифракционной решетки

Цель работы: Определение длин волн красного, зеленого и фиолетового лучей для четко видимых спектров 1-го и 2-го порядков.

Приборы и принадлежности: Дифракционная решетка, экран, лампа для подсвечивания.

Теоретическое введение

Если пучок параллельных лучей света встречает на своем пути непрозрачное круглое тело или его пропускают через достаточно малое круглое отверстие, то на экране будет замечено светлое или темное пятно в центре чередующихся темных и светлых колец.

Это явление распространения света в область геометрической тени, указывающее на отступление от закона прямолинейности распространения света получило название дифракции света.

Для получения ярких дифракционных спектров применяются дифракционные решетки. Дифракционная решетка представляет собой плоскую стеклянную пластинку, на которой с помощью делительной машины нанесен ряд параллельных штрихов (в хороших решетках - до 1000 штрихов на миллиметр). Штрихи являются практически непрозрачными для света, т.к. из-за своей шероховатости они в основном рассеивают свет. Промежутки между штрихами свободно пропускают свет и называются щелями.

Совокупность ширины штриха и прозрачного промежутка называется периодом или постоянной решетки. Если обозначить ширину штриха через b, а ширину щели а, то период решетки

d = a +b.

Пусть на решетку падают лучи света перпендикулярно плоскости. Свет, проходя через каждую щель, испытывает дифракцию, т.е. отклоняется от прямолинейного направления. Если на пути лучей, распространяющихся от щелей решетки, поместить линзу, а в фокальной плоскости линзы экран, то на экране в одну точку соберутся все параллельные лучи, идущие под одним и тем же углом к нормали (рисунок 1). Лучи идущие под другим углом, соберутся в другой точке. Освещенность каждой точки экрана будет зависеть как от интенсивности света, даваемой каждой щелью в отдельности, так и от результата интерференции лучей, прошедших через разные щели Как видно из рисунка 1 разность хода лучей для двух соседних щелей

∆ = d sin,

где d -период решетки, φ - угол отклонения лучей.

Рисунок 1

Если эта разность будет равна четному числу полуволн, в направлении угла φ будет наблюдаться максимум освещенности:

d sinφ = 2kλ/2 = kλ, (1)

а при условии

d sinφ = (2k+1)λ/2 (2)

наблюдается минимум.

Легко видеть, что при разности хода ∆=kλ все остальные щели будут по направлению угла φ также давать максимум, т.к. во всех случаях разности хода будут кратны. Эти максимумы называются основными.

Итак, при нормальном падении лучей на решетку для основных максимумов, полученных на экране от дифракционной решетки, имеем соотношение:

d sinφ = kλ, (3)

где k - 1,2,3 ,…целое число, называемое порядком спектра. Понятие порядок спектра связано с тем, что на экране наблюдается ряд максимумов, симметрично расположенных относительно белой полосы (спектр нулевого порядка), образованной светом, прошедшим через решетку без отклонения.

Из формулы (3) видно, что чем больше длина волны, тем большему углу дифракции соответствует положение максимума (рисунок 2). При падении на решетку монохроматического света на экране возникают одноцветные полосы. Формула (3) позволяет определить длину световой волны:

λ=d sinφ/k. (4)

Определение длины волны сводится к измерению угла φ. Для измерения углов служит специальный прибор гониометр (рисунок 3). Где К - каллиматор со щелью (для получения узкого пучка параллельных лучей); Т - зрительная труба; ОК – окуляр с нитью для наведения трубы на определенную линию спектра; С - круговая шкала с нониусом;

Рисунок 2

Др - дифракционная решетка.

Рисунок 3