- •1.Кинематическое описание движения. Материальная точка
- •Полное ускорение Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по правилу сложения векторов и определяется формулой:
- •7.Ипмульс, закон сохранения импульса. Применение сохранения импульса к абсолютно неупругому удару. Движение тел с переменной массой.
- •Движение тела переменной массы
- •8.Момент импульса. Закон сохранения момента импульса.
- •9. Момент силы. Основное уравнение динамики вращательного движения.
- •11.Упругая сила. Закон Гука. Силы упругости
- •12. Консервативные и неконсервативные силы в механике. Потенциальная энергия. Работа силы.
- •13. Кинетическая энергия. Закон сохранения энергии в механики.
- •14. Закон всемирного тяготения. Движение в центральном поле. Космические скорости. Законы Кемплера.
- •Первый закон Кеплера (закон эллипсов)
- •3) Третий закон Кеплера (гармонический закон
- •15.Уравнения движения абсолютно тв. Твердого тела. Центр масс, примеры вычисления центр масс.
- •16. Плоское вращение абсолютно твердого тела и его кинетическая энергия.
- •17. Момент инерции тела и его физический смысл. Примеры вычисления момента инерции твердых тел. Теорема Штейнера .
- •18. Момент импульса твердого тела. Вектор угловой скорости и вектор момента импульса. Гироскопический эффект. Угловая скорость прецессии
- •. Стационарное движение идеальной жидкости. Уравнение бернулли
- •Формула Пуазейля
17. Момент инерции тела и его физический смысл. Примеры вычисления момента инерции твердых тел. Теорема Штейнера .
Момент инерции — скалярная (в общем случае — тензорная) физическая величина, мера инертности во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости).
Единица измерения СИ: кг·м².
Обозначение: I или J.
2. Физический смысл момента инерции. Произведение момента инерции тела на его угловое ускорение равно сумме моментов всех сил, приложенных к телу. Сравните. Вращательное движение. Поступательное движение. Момент инерции представляет собой меру инерции тела во вращательном движении
Например, момент инерции диска относительно оси О' в соответствии с теоремой Штейнера:
Теорема Штейнера: Момент инерции I относительно произвольной оси равен сумме момента инерции I0 относительно оси, параллельной данной и проходящей через центр масс тела, и произведения массы тела m на квадрат расстояния d между осями :
18. Момент импульса твердого тела. Вектор угловой скорости и вектор момента импульса. Гироскопический эффект. Угловая скорость прецессии
Момент импульса твердого тела относительно оси есть сумма моментов импульса отдельных частиц, из которых состоит тело относительно оси. Учитывая, что , получим .
Если сумма моментов сил, действующих на тело, вращающееся вокруг неподвижной оси, равна нулю, то момент импульса сохраняется (закон сохранения момента импульса): . Производная момента импульса твердого тела по времени равна сумме моментов всех сил, действующих на тело:.
угловую скорость как вектор, величина которого численно равна угловой скорости, и направленный вдоль оси вращения, причем, если смотреть с конца этого вектора, то вращение направлено против часовой стрелки. Исторически сложилось2, что положительным направлением вращения считается вращение «против часовой стрелки», хотя, конечно, выбор этого направления абсолютно условен. Для определения направления вектора угловой скорости можно также воспользоваться «правилом буравчика» (которое также называется «правилом правого винта») − если направление движения ручки буравчика (или штопора) совместить с направлением вращения, то направление движения всего буравчика совпадет с направлением вектора угловой скорости.
Вращающееся тело ( колесо мотоцикла ) стремиться сохранять положение оси вращения в пространстве неизменным .( гироскопический эффект ) Поэтому возможно движение на 2-х колёсах, но не возможно стояние на двух колёсах Этот эфект используется в корабельных и танковых системах наведения орудий. ( корабль качается на волнах, а орудие смотрит в одну точку ) В навигации и др.
Наблюдать прецессию достаточно просто. Нужно запустить волчок и подождать, пока он начнёт замедляться. Первоначально ось вращения волчка вертикальна. Затем его верхняя точка постепенно опускается и движется по расходящейся спирали. Это и есть прецессия оси волчка.
Главное свойство прецессии — безынерционность: как только сила, вызывающая прецессию волчка, пропадёт, прецессия прекратится, а волчок займёт неподвижное положение в пространстве. В примере с волчком этого не произойдет, поскольку в нём вызывающая прецессию сила — гравитация Земли — действует постоянно.
19. Идеальная и вязкая жидкость. Гидростатика несжимаемой жидкости. Стационарное движение идеальной жидкости. Уравнение Бирнулли.
Идеальной жидкостью назвается воображаемая несжимаемая жидкость, в которой отсутствуют вязкость, внутреннее трение и теплопроводность. Так как в ней отсуствует внутреннее трение, то нет касательных напряжений между двумя соседними слоями жидкости.
вязкая жидкость характеризуется наличием сил трения, которые возникают при ее движении. вязкой наз. жидкость, в которой при движении кроме нормальных напряжений наблюдаются и касательные напряжения
Рассматриваемые в Г. ур-ния относит. равновесия несжимаемой жидкости в поле сил тяжести (относительно стенок сосуда, совершающего движение по нек-рому известному закону, напр. поступательное или вращательное) дают возможность решать задачи о форме свободной поверхности и о плескании жидкости в движущихся сосудах - в цистернах для перевозки жидкостей, топливных баках самолётов и ракет и т. п., а также в условиях частичной или полной невесомости на космич. летат. аппаратах. При определении формы свободной поверхности жидкости, заключённой в сосуде, кроме сил гидростатич. давления, сил инерции и силы тяжести необходимо учитывать поверхностное натяжение жидкости. В случае вращения сосуда вокруг вертик. оси с пост. угл. скоростью свободная поверхность принимает форму параболоида вращения, а в сосуде, движущемся параллельно горизонтальной плоскости поступательно и прямолинейно с пост. ускорением а, свободной поверхностью жидкости является плоскость, наклонённая к горизонтальной плоскости под углом