- •Дніпропетровська державна фінансова академія
- •Задача 7
- •Задача 9
- •Задача 10
- •Задача 11
- •Задача 12
- •Задача 13
- •Задача 14
- •Задача 15
- •Задачі для розв’язання Задача 1
- •Задача 2
- •Задача 3
- •Завдання 1
- •Задача 6
- •Задача 7
- •Задача 8
- •Задача 9
- •Задача 10
- •Задача 11
- •Приклади розв’язання типових задач
- •Розподіл робітників складального цеху за кваліфікацією
- •Розподіл товару за ціною
- •Розподіл товару за його ціною
- •Розподіл товару за його ціною
- •Підприємство і
- •Підприємство іі
- •Розподіл підприємств за статутним капіталом і прибутком
- •Аналіз наявності залежності між статутним капіталом і прибутком підприємств
- •Бібліографічний список до практичного заняття : [ 5 – 11; 13; 15 - 20]
- •План заняття
- •Задачі для розв’язання Задача 1
- •Задача 2
- •Задача 3
- •Задача 4
- •Задача 5
- •Задача 6
- •Задача 7
- •Задача 8
- •Задача 9
- •Задача 10
- •Задача 11
- •Задача 12
- •Задача 13
- •Задача 14
- •Задача 15
- •Задача 16
- •Задача 17
- •Задача 18
- •Приклади розв’язання типових задач
- •Аналіз динаміки доходів Зведеного бюджету області
- •Бібліографічний список до практичного заняття : [ 5 - 11, 15 - 20 ]
- •План заняття
- •Задачі для розв’язання
- •Задача 6
- •Задача 7
- •Задача 8
- •Задача 9
- •Задача 10
- •Задача 11
- •Задача 12
- •Ситуаційне завдання 1
- •Ситуаційне завдання 2
- •Ситуаційне завдання 3
- •Приклади розв’язання типових задач
- •Розподіл товару на складі за його ціною
- •Розрахункова таблиця до прикладу 4
- •Задача 2
- •Задача 3
- •Задача 4
- •Задача 5
- •Ситуаційне завдання 2
- •Ситуаційне завдання 3
- •Завдання 1
- •Завдання 2
- •Приклади розв’язання типових задач
- •Результати обчислення показників динамічного ряду
- •Результати приведення до однієї основи показників динамічних рядів
- •Бібліографічний список до практичного заняття : [ 5 - 11, 15 - 20 ]
- •Задача 2
- •Задача 3
- •Задача 4
- •Задача 5
- •Задача 6
- •Задача 7
- •Задача 8
- •Задача 9
- •Приклади розв’язання типових задач
- •1. Метод середньої ступінчастої
- •2. Метод середньої плинної
- •3. Метод аналітичного вирівнювання
- •Допоміжна таблиця для розрахунку параметрів лінійної моделі
- •Значення параметра t у разі введення умовного нуля для непарної кількості рівнів динамічного ряду
- •Допоміжна таблиця для розрахунку параметрів параболи
- •Бібліографічний список до практичного заняття: [5 – 11; 15 - 20]
- •Задача 1
- •Задача 2
- •Задача 3
- •Задача 4
- •Задача 5
- •Задача 6
- •Задача 7
- •Задача 8
- •Задача 9
- •Задача 10
- •Задача 11
- •Задача 12
- •Завдання 2
- •Завдання 3
- •Приклади розв’язання типових задач
- •Бібліографічний список до практичного заняття : [ 5 – 11; 15 - 20 ]
- •Задача 1
- •Задача 2
- •Задача 3
- •Задача 4
- •Задача 5
- •Задача 6
- •Задача 7
- •Приклади розв’язання типових задач
- •Залежність між факторною (х) та результативною (у) ознаками
- •Допоміжна таблиця для розрахунку параметрів лінійної моделі
- •Допоміжна таблиця для обчислення коефіцієнта кореляції Пірсона
- •Бібліографічний список до практичного заняття: [5 - 11, 15 - 20]
- •Задача 2
- •Задача 3
- •Задача 4
- •Задача 5
- •Задача 6
- •Задача 7
- •Задача 8
- •Дискретний ряд розподілу проданого товару за цінами
- •Бібліографічний список до практичного заняття: [5 – 11 , 15 - 20] список рекомендованої літератури Основна література:
- •Про внесення змін до Закону України“Про державну статистику“:Закон України від 13.07.2000 № 1922-ііі із змінами і доповненнями.
- •Додаткова література:
- •Internet-ресурси:
- •Додатки
- •Значення χ2 –критерію Пірсона для різних рівнів імовірності р
- •Додаток в Критичні значення f – критерію Фішера
- •Додаток г Критичні значення кореляційного відношення η2 і коефіцієнта детермінації r2
Розподіл товару за його ціною
|
Ціна товару, грн. |
Кількість товару, од.(fi ) |
Питома вага ( di ), % |
Накопичена (кумулятивна) частота ( Sfi ) |
|
35,0 – 42,2 |
8 |
17,8 |
8 |
|
42,2 – 49,4 |
5 |
11,0 |
13 |
|
49,4 – 56,6 |
9 |
20,0 |
22 |
|
56,6 – 63,8 |
7 |
15,6 |
29 |
|
63,8 – 71,0 |
7 |
15,6 |
36 |
|
71,0 – 78,2 |
9 |
20,0 |
45 |
|
Разом |
45 |
100,0 |
- |
Висновок: визначивши кількість інтервалів та побудувавши інтервальний варіаційний ряд у табличному та графічному вигляді на основі наведеної сукупності за ознакою «ціна товару», ми бачимо, що найбільша кількість одиниць товару знаходиться в двох інтервалах (49,4 – 56,6 грн.) та (71,0 – 78,2 грн.) – по 9 одиниць (або по 20 %), а найменша - 5 одиниць (або 11 %) - у другому інтервалі (42,2 – 49,4 грн.).
Нижче наведено графік побудованого ряду розподілу у вигляді гістограми, яка представляє собою стовпчикову діаграму без проміжків між окремими стовпчиками, висота стовпчика відповідає частоті інтервалу.
Розподіл товару за його ціною
9 9

9
8
8
8
7 7
7

7
6 5
5
4
3
2
1
0
35 42,2 49,4 56,6 63,8 71 78,2
Ціна, грн.
Приклад 4
Дані про розподіл робітників двох підприємств за рівнем заробітної платні наведені у таблиці:
|
1 підприємство |
2 підприємство | |||
|
Заробітна платня, грн. |
Чисельність робітників, осіб |
Заробітна платня, грн. |
Чисельність робітників, осіб | |
|
До 500 |
20 |
До 500 |
15 | |
|
500 – 700 |
52 |
500 – 650 |
25 | |
|
700 – 900 |
64 |
650 – 800 |
48 | |
|
900 – 1100 |
46 |
800 – 950 |
69 | |
|
1100 – 1300 |
28 |
950 – 1100 |
72 | |
|
1300 і більше |
10 |
1100 – 1250 |
45 | |
|
|
|
1250 і більше |
18 | |
|
Разом |
220 |
Разом |
292 | |
Провести перегрупування робітників за рівнем заробітної платні, утворивши такі групи: до 700; 700 – 1000; 1000 – 1300; 1300 і більше.
Розв’язання
Перегрупування, або вторинне групування, проводиться за припущенням, що в межах одного інтервалу значення ознак розташовано рівномірно. Це припущення дає право ділити частоту інтервалу на частки, пропорційно відрізкам інтервалу.
Якщо за первинними групуваннями для двох підприємств не можна було робити порівняльний аналіз, то за вторинними групуваннями такий аналіз можливий.
Так, за умовами вторинного групування слід утворити перший інтервал до 700. Для першого підприємства до новоутвореного інтервалу за даними первинного групування увійде перший інтервал (до 500) та другий інтервал, оскільки 700 становить верхню межу другого інтервалу. Враховуючи припущення, до першого новоутвореного інтервалу ввійде частота першого інтервалу первинного групування та частота другого інтервалу первинного групування.
Таким чином, частота першого інтервалу вторинного групування дорівнюватиме 20 + 52 = 72, ми використовуємо тут метод простого укрупнення інтервалу. Другий інтервал вторинного групування включає повністю третій інтервал (700 – 900) та половину четвертого інтервалу первинного групування, так як його верхня межа становить 1000. Відповідно частота другого інтервалу вторинного групування дорівнюватиме 64 +0,5 × 46 = 87. Тут використовується метод перегрупування за часткою окремих груп в загальному їх підсумку (пропорційний дольовий перерозподіл).
Аналогічно проводимо розрахунки для решти інтервалів. Розрахунки наведені у відповідних таблицях.
