
Цветные реакции на аминокислоты.
Аминокислоты, входящие в состав белков, можно выявить при помощи универсальной цветной реакции с нингидрином. В присутствие этого соединения все аминокислоты дают синее окрашивание, чем и пользуются для проявления аминокислот при хроматографическом анализе. Кроме того, имеются цветные реакции на отдельные аминокислоты: реактив Миллона на тирозин (смесь соли окиси и закиси ртути), реактив Адамкевича на триптофан (смесь глиоксиловой и серной кислот), реакция Фоля на цистеин (уксуснокислый свинец в щелочной среде), реактив Паули на гистидин (сульфоновая и азотистые кислоты) и др.
СТРОЕНИЕ БЕЛКОВЫХ ВЕЩЕСТВ.
Вопрос о строении белковых веществ впервые был поставлен А.Я.Данилевским в 1888 г. Он высказал предположение, что аминокислоты соединяются в белках по типу пептидов, т.е. за счёт своих аминных и карбоксильных групп.
Данилевский считал, что белки состоят из полипептидных цепей, которые в свою очередь соединяются между собой за счёт дополнительных связей, благодаря чему они обладают большой прочностью. Этими дополнительными связями могут быть связи за счёт сульфигидридных групп цистеина, за счёт гидроксильных и карбоксильных групп оксикислот - тиразина, серина и др. и, наконец, за счёт водородных атомов, присоединённых к азоту.
Атомы, водорода, согласно схеме, как бы распределяются между атомом кислорода одной пептидной цепи и атомом азота - другой и таким образом связывают полипептиды друг с другом в виде мостиков из водорода. Из известных нам 22 аминокислот может получиться огромное количество различных белковых веществ у живых организмов. Отдельные белки, встречающиеся в организмах, отличаются один от другого не только составом аминокислот, но и порядком их сочетания.
В 1902 г. Фишер подтвердил теорию А.Я.Данилевского о том, что аминокислоты связаны между собой именно по типу кислотных амидов (─CO─NH).Впоследствии Фишер и Абдергальден произвели синтез полипетидов вне организма, пользуясь хлорангидридами аминокислот. Они получили полипептид, состоящий из 19 аминокислот. Это соединение, хотя и давало биуретовую реакцию, не обладало всеми свойствами природных белков. А.Я.Данилевский также получил белковоподобное соединение, но в отличие от Абдергальдена и Фишера он использовал не чистые аминокислоты, а пептоны, образовавшиеся при гидролизе белка.
Несмотря на большие успехи в области изучения строения белковых молекул, мы в настоящее время ещё не знаем точной структуры их, а потому до сих пор никому не удалось получить искусственный белок.
Различают видовую и тканевую специфичность белков, т.е. различают белковые вещества у разных видов животных и белковые вещества различных тканей у одного и того же животного. Например, аминокислотный состав белковых веществ различных животных неодинаков.
Эти три белка - фибриноген, гемоглобин и казеин - отличаются один от другого процентным содержанием тех или иных аминокислот, кроме того, эти белки могут отличаться и порядком сочетания аминокислот в молекулах. При однаковом количестве аминокислот в белке они могут в разной последовательно соединяться между собой. Как архитектор из одинакового количества кирпичей может построить разной формы здания, так и природа из одинакового количества аминокислот может построить различные белковые молекулы.
ВАЖНЕЙШИЕ ПРОСТЫЕ БЕЛКИ (ПРОТЕИНЫ) ПРОТАМИНЫ И ГИСТОНЫ[c.50] Гистоны. Гистоны являются основными белками (менее щелочными, чем протамины), входящими в состав соматических клеток. У высших организмов нуклеогистоны составляют основной компонент хромосом. Существует несколько типов гистонов. Их молекулярный вес лежит в пределах от 10 000 до 20 000. По-видимому, гистон имеет свою собственнуювторичную структуру. Поскольку ДНК в комплексе с гистоном не может служить затравкой при синтезе РНК, было высказано предположение, 1тогистоны каким-то образом регулируют активность гена. Изучение протаминов и гистонов находится еще в самой начальной стадии.[c.358] Аргинин является незаменимой аминокислотой , содержащейся во всех белках, особенно ее много в протаминах и гистонах.[c.422] Протамины и гистоны представляют большой интерес потому, что они, как мы увидим, являются составной частью многих важных сложных белков (нуклеопротеидов), входящих в состав клеточных ядер. Отсюда понятно, почему протамины и гистоны удается наиболее легко получать из тканей, богатых ядерным веществом, в частности из железистых тканей. В сперме рыб протамины встречаются и в свободном состоянии.[c.50] Нуклеиновые кислоты содержат многочисленные остатки фосфорной кислоты, в связи с чем они обладают отчетливо выраженными кислотными свойствами и могут образовывать с белками солеобразные соединения. Вопрос об образовании и свойствах искусственных нуклеопротеидов уже обсуждался в гл. XI. Благодаря наличию кислотных свойств нуклеиновые кислоты соединяются в первую очередь с основными белками, в частности с протаминами и гистонами. И те и другие найдены главным образом в ядрах, и до сих пор еще неясно, содержатся ли они также и в цитоплазме. Интерес представляет тот факт, что ядра содержат либо протамины, либогистоны , но никогда не содержат оба этих белка одновременно [65].[c.393] На основании рентгеноструктурного анализа и правил Чаргаффа в 1953 г. Уотсон и Крик предложили двуспиральную модель строения ДНК (вторичная структура). Молекула ДНК построена из двух анти-параллельных полинуклеотидных цепей, образующих правую спираль(описано пять вариантов А-Е и Z-фopмa — левая спираль). Обе цепи удерживаются между собой водородными связями междукомплементарными парами оснований (А-Т — две водородных связи, Г-Ц — три водородных связи). Углеводно-фосфорные остовы обеих цепей обращены наружу, а основания — внутрь спирали плоскости оснований параллельны и между ними имеется гидрофобное взаимодействие(стэкинг-взаимодействие). Вдоль оси отдельной цепи на каждые 0,34 нм приходится один мононуклеотид, шаг спирали 3,4 нм, в один виток укладывается 10 нуклеотидных остатков, диаметр спирали 2 нм. Отрицательно заряженные фосфатные группы, во-первых, образуют два спиральных желобка — малый и большой во-вторых, отталкиваются и стремятся вытянуть цепь ДНК. Именно поэтому в реальной клетке ДНК связана с положительно заряженными белками (протамины и гистоны) иполиаминами (спермин, спермидин). Структура ДНК может изменяться в зависимости от ионного микроокружения в клетке.[c.292] Протамины были найдены в клетках спермы рыб, а гистоны — в ядрах ядерных эритроцитов [66]. Соединения этих веществ с нуклеиновыми кислотами экстрагируются из клеток 1 М раствором хлористого натрия. При диализе полученных экстрактов протамины диффундируют через полупроницаемую мембрану, а нуклеиновые кислоты остаются внутри диализатора [67]. В состав соединений нуклеиновых кислот с протаминами и гистонами в большинстве случаев входит дезоксирибонуклеиновая кислота. Рибонуклеиновая кислста была найдена в той части ядра, которая не растворяется в 1 М растворе хлористого натрия. Эта рибонуклеиновая кислота связана не с протаминами или гистонами , а с истинными белками [68, 69].[c.393] Нуклеопротеиды — самые сложные вещества в природе. Этосоединения белков (протеинов) с полинуклеотидами, т. е. нуклеиновыми /сысло/ гал и (см. стр. 532), содержащиеся в клеточных ядрах, структурных элементах цитоплазмы. Чаще всего с нуклеиновыми кислотами соединены протамины и гистоны . Они присутствуют во всех без исключения живых организмах.[c.442] Основные (щелочные) белки — это протамины и гистоны,, которые содержат много основных аминокислот лизина, гистидина н особенно аргинина. Протамины н гистоны образуют с нуклеиновыми кислотами нуклеопротеиды. Другие белки могут содержаться в ядре в виде самостоятельной фазы. Ядрышко состоит из больших гранул, которые по размеру близки к рибосомам (диаметр их 15 нм) и содержат большое количество РНК. Основное вещество ядра называется н у к л е о-плазмой, В ядре находятся хромосомы — носители наследственности, Хромосомы имеют хроматиновые структуры, основными компонентами которых являются ДНК и РНК.[c.56] Основной характер протаминов и гистонов обусловлен присутствием в них большого количества диаминокислот аргинина, гистидина и лизина. Кислотные свойства нуклеиновых кислот зависят от диссоциации имеющихся в них остатков фосфорной кислоты. Нуклеиновые кислотыпредставляют собой высокомолекулярные соединения, построенные из большого количества мононуклеотидов. Нуклеиновые кислоты в зависимости от входящего в их состав углевода — рибо-зы или дезоксирибозы — носят соответствующие названия — рибонуклеиновая кислота, или РНК, и дезоксирибонуклеиновая кислота, или ДНК.Рибонуклеиновая кислота (РНК) содержится преимущественно в протоплазме клеток (в рибосомах, митохондриях, гиалоплазме) и в небольшом количестве находится в ядре и ядрышке. Дезоксирибонукледновая кислота (ДНК) содержится преимущественно в я [c.45] Н у к л е о п р о т е и д ы. Построены из нуклеине- /-ве.иговые молекулы 2-пу-вых кислот и основных белков (протаминов и гистонов) стоепространство 0 40 А (мо-являются существенными составными частямихромосом. мет аллои) /-иу шо Гкн-К нуклеопротеидам относятся инфекционные вирусы (вирус слота, табачной мозаики , нолиомиэлита и др.) некоторые из них[c.399] Протамины и гистоны. Данная группа белков отличается рядом характерных физико-химических свойств, своеобразием аминокислотного состава и представлена в основном белками с небольшой молекулярной массой. Протамины обладают выраженными основными свойствами, обусловленными наличием в их составе от 60 до 85% аргинина. Так,сальмин, выделенный из молок семги, состоит на 85% из аргинина. Высоким содержанием аргинина отличается другой хорошо изученныйбелок—клу-пеин, выделенный из молок сельди из 30 аминокислот в нем на долю аргинина приходится 21 остаток. Расшифрована первичная структура клупеина. Протамины хорошо растворимы в воде, изоэлектрическая точка их водных растворов находится в щелочной среде. По современным представлениям, протамины скорее всего являются пептидами, а не белками, поскольку их молекулярная масса не превышает 5000. Они составляют белковый компонент в структуре ряда сложных белков.[c.73] Белки, обладаюшие основным характером, т. е. несущие положительный заряд, как, аапри ер, протамины и гистоны, хорошо осаждаются алкалоидными реактивами в нейтральной среде без подкисления.[c.43] Белки осаждаются, если убрать оба фактора устойчивости белковой молекулы — заряд и гидратную оболочку. Это обеспечивается нагреванием при достижении изоэлектрической точки. Для больщинст-ва белков изоэлектрическая точка соответствует слабокислой среде (pH около 5,0). Протамины и гистоны имеют изоэлектрическую точку в щелочной среде(pH около 8,0). Кроме pH среды важную роль в осаждении белков при нагревании играет концентрация солей.[c.27] Протамины и. гистоны. Отличаются высоким содержаниемдиаминокислот, отсутствием серусодержащих ампнокнслот и ограниченным числом аминокислот, входящих в их состав. Белки основногохарактера с небольшим, сравнительно с другими белками, молекулярным весом. Они растворимы в воде и разбавленных кислотах и осаждаются из растворов при добавлении аммиака, щелочей или белков. К протаминам относятся белки, выделенные из спермы рыб (клупеин, сальмин, стурнн и др.), где они находятся в соединении с нуклеиновыми кислотами. Протамины, растворяясь в воде, дают щелочные растворы, не коагулирующие при нагревании они содержат до 87% аргинина. Основной характер у них более резко выражен, чем у гистонов. Гистоны содержат около 20—30% диаминокислот, обладают ясно выраженным основным характером, в клетках животных находятся в виде соединений снуклеиновыми кислотами или пигментами (в составе нуклеопротеидов и хромопротеидов).[c.175] П р о т а м и и ы и гистоны являются наиболее простыми белками. Они отличаются от других белков тем, что имеют слабош елочной характер. Вследствие этого, первые исследователи рассматривали протамины игистоны не как белковые вещества, а как особые органические основания, близкие к растительным алкалоидам. Впоследствии стало известно, чтощелочной характер этих ,белков обусловлен тем, что в состав их молекулы входят преимущественно аминокислоты—л и з и н, а р г и и и и и гистидин, обладающие основными свойствами.Количество содержащихся в протаминах диаминокислот доходит до 80% и более.
.
Альбумины (от лат. albumen, albuminis — белок) — представители природных белков. В отличие от глобулинов, обладают свойством растворяться в чистой воде и разбавленных растворах кислот, щелочей и солей. Из водных растворов альбуминов осаждаются сернокислым аммонием только при полном насыщении раствора (в отличие от других белков, осаждаемых при меньшей концентрации этой соли). А. осаждаются также спиртом, а при нагревании растворов до t° 75° свертываются. Альбумины широко распространены в живых организмах. Типичные представители А.: альбумин сыворотки крови, лактальбумин сыворотки молока, овоальбумин яиц. В плотных тканях организма человека содержание А. относительно невелико (не превышает 5—10% всех белков); в сыворотке крови содержание их гораздо больше и составляет в норме 55—60% всех ее белков (3,3—4,0% веса сыворотки). А. сыворотки крови образуются только в печени, откуда постоянно переходят в кровяное русло. Количество альбуминов в сыворотке, таким образом, в значительной степени зависит от интенсивности биосинтеза их в печени. Физиологическая роль А. сыворотки очень велика: эти белки во многом определяют не только свойства самой сыворотки, но и ряд процессов обмена в организме в целом. Благодаря своему сравнительно небольшому молекулярному весу (65 000) они оказывают большое влияние на осмотическое и онкотическое давление крови и, следовательно, на обмен воды между нею и тканями. При более или менее выраженном уменьшении содержания альбумина в сыворотке крови способность последней удерживать воду снижается, что ведет к повышенному переходу воды из сыворотки во внеклеточное пространство тканей, т. е. к возникновению отеков. Особенностью всех А., в первую очередь сывороточного, является способность образовывать комплексы с очень большим количеством других соединений. Практически в сыворотке крови альбумины всегда содержатся в виде комплексов с различными катионами и анионами, липидами, углеводами, пигментами, гормонами и т. п. Благодаря образованию этих комплексов осуществляется перенос кровью многих соединений из одного органа в другие, а также регулирование влияния ряда веществ на процессы жизнедеятельности организма. Так, например, транспорт кровью почти не растворимого в воде чистого билирубина возможен потому, что большая часть его в крови образует хорошо растворимое соединение с А. Связывание альбуминов и ионов кальция в виде неионизированного соединения играет очень большую роль в поддержании постоянной концентрации в сыворотке крови ионов кальция, оказывающих многообразное влияние на функции различных органов и тканей. Такую же роль играет образование комплексов А. с тироксином, гормонами коры надпочечников, половыми и т. д. Уменьшение содержания А. в сыворотке крови, наблюдающееся при очень многих заболеваниях, особенно при хронических инфекционных процессах, поражениях печени и почек, травмах костной системы, после тяжелых операций, может поэтому вызвать значительные вторичные изменения в обмене различных веществ в организме больного и наложить отпечаток на течение основного заболевания. Борьба с возникшей гипоальбуминемией (введение растворов альбуминов, сыворотки крови, соответствующая диета) является поэтому необходимым терапевтическим мероприятием при всех патологических состояниях, сопровождающихся более или менее выраженным уменьшением содержания А. в сыворотке крови.
В отличие от альбуминов глобулины не растворимы в воде, а растворимы в слабых солевых растворах.
a1-ГЛОБУЛИНЫ
В эту фракцию входят разнообразные белки. a1-глобулины имеют высокую гидрофильность и низкую молекулярную массу - поэтому при патологии почек легко теряются с мочой. Однако их потеря не оказывает существенного влияния на онкотическое давление крови, потому что их содержание в плазме крови невелико.
Функции a1-глобулинов
1. Транспортная. Транспортируют липиды, при этом образуют с ними комплексы - липопротеины. Среди белков этой фракции есть специальный белок, предназначенный для транспорта гормона щитовидной железы тироксина - тироксин-связывающий белок.
2. Участие в функционировании системы свертывания крови и системы комплемента - в составе этой фракции находятся также некоторые факторы свертывания крови и компоненты системы комплемента.
3. Регуляторная функция. Некоторые белки фракции a1-глобулинов яляются эндогенными ингибиторами протеолитических ферментов. Наиболее высока в плазме концентрация a1-антитрипсина. Содержание его в плазме от 2 до 4 г/л (очень высокое), молекулярная масса - 58-59 кДа. Главная его функция - угнетение эластазы - фермента, гидролизующего эластин (один из основных белков соединительной ткани). a1-антитрипсин также является ингибитором протеаз: тромбина, плазмина, трипсина, химотрипсина и некоторых ферментов системы свертывания крови. Количество этого белка увеличивается при воспалительных заболеваниях, при процессах клеточного распада, уменьшается при тяжелых заболеваниях печени. Это уменьшение - результат нарушения синтеза a1-антитрипсина, и связано оно с избыточным расщеплением эластина. Существует врожденная недостаточность a1-антитрипсина. Считают, что недостаток этого белка способствует переходу острых заболеваний в хронические.
К фракции a1-глобулинов относят также a1-антихимотрипсин. Он угнетает химотрипсин и некоторые протеиназы форменных элементов крови.
a2-ГЛОБУЛИНЫ.
Высокомолекулярные белки. Эта фракция содержит регуляторные белки, факторы свертывания крови, компоненты системы компемента, транспортные белки. Сюда относится и церулоплазмин. Этот белок имеет 8 участков связывания меди. Он является переносчиком меди, а также обеспечивает постоянство содержания меди в различных тканях, особенно в печени. При наследственном заболевании - болезни Вильсона - уровень церулоплазмина понижается. Вследствие этого повышается концентрация меди в мозге и печени. Это проявляется развитием неврологической симптоматики, а также циррозом печени.
Гаптоглобины. Содержание этих белков составляет приблизительно 1/4 часть от всех a2-глобулинов. Гаптоглобин образует специфические комплексы с гемоглобином, освобождающимся из эритроцитов при внутрисосудистом гемолизе. Вследствие высокой молекулярной массы этих комплексов они не могут выводиться почками. Это предотвращает потерю железа организмом.
Комплексы гемоглобина с гаптоглобином разрушаются клетками ретикуло-эндотелиальной системы (клетки системы мононуклеарных фагоцитов), после чего глобин расщепляется до аминокислот, гем разрушается до билирубина и экскретируется желчью, а железо остается в организме, и может быть реутилизировано. К этой же фракции относится и a2-макроглобулин. Молекулярная масса этого белка 720 кДа, концентрация в плазме крови 1.5-3 г/л. Он является эндогенным ингибитором протеиназ всех классов, а также связывает гормон инсулин. Время полужизни a2-макроглобулина очень малое - 5 минут. Это универсальный “чистильщик” крови, комплексы “a2-макроглобулин-фермент” способны сорбировать на себе иммунные пептиды, например, интерлейкины, факторы роста, фактор некроза опухолей, и выводить их из кровотока.
С1-ингибитор - гликопротеид, является основным регуляторным звеном в классическом пути активации комплемента (КПК), способен угнетать плазмин, калликреин. При недостатке С1-ингибитора развивается ангионевротический отек.
b-ГЛОБУЛИНЫ
К этой фракции относятся некоторые белки системы свертывания крови и подавляющее большинство компонентов системы активации комплемента (от С2 до С7).
Основу фракции b-глобулинов составляют Липопротеины Низкой Плотности (ЛПНП) (Подробнее о липопротеинах: смотрите лекции “Метаболизм липидов»).
C-реактивный белок . Содержится в крови здоровых людей в очень низких концентрациях ,менее 10 мг/л. Его функция неизвестна. Концентрация С-реактивного белка значительно увеличивается при острых воспалительных заболеваниях. Поэтому С-реактивный белок называют белком "острой фазы" (к белкам острой фазы относятся также альфа-1-антитрипсин, гаптоглобин).
гамма-ГЛОБУЛИНЫ
В этой фракции содержатся в основном АНТИТЕЛА - белки, синтезируемые в лимфоидной ткани и в клетках РЭС, а также некоторые компоненты системы комплемента.
Функция антител - защита организма от чужеродных агентов (бактерии, вирусы, чужеродные белки), которые называются АНТИГЕНАМИ.
Главные классы антител в крови:
- иммуноглобулины G (IgG)
- иммуноглобулины M (IgM)
- иммуноглобулины A (IgA), к которым относятся IgD и IgE.
Только IgG и IgM способны активировать систему комплемента. С-реактивный белок также способен связывать и активировать С1-компонент комплемента, но эта активация непродуктивна и приводит к накоплению анафилотоксинов. Накопившиеся анафилотоксины вызывают аллергические реакции.
К группе гамма-глобулинов относится также криоглобулины. Это белки, которые способны выпадать в осадок при охлаждении сыворотки. У здоровых людей их в сыворотке нет. Они появляются у больных с ревматическим артритом, миеломной болезнью.
Среди криоглобулинов существует белок фибронектин. Это высокомолекулярный гликопротеин (молекулярная масса 220 кДа). Он присутствует в плазме крови и на поверхности многих клеток (макрофагов, эндотелиальных клеток, тромбоцитов, фибробластов). Функции фибронектина: 1. Обеспечивает взаимодействие клеток друг с другом; 2. Способствует адгезии тромбоцитов; 3. Предотвращает метастазирование опухолей. Плазменный фибронектин является опсонином - усиливает фагоцитоз. Играет важную роль в очищении крови от продуктов распада белков, например, распада коллагена. Вступая в связь с гепарином , участвует в регуляции процессов свертывания крови. В настоящее время этот белок широко изучается и используется для диагностики особенно при состояниях, сопровождающихся угнетением системы макрофагов (сепсис и др.)
Интерферон - это гликопротеин. Имеет молекулярную массу около 26 кДа. Обладает видовой специфичностью. Вырабатывается в клетках в ответ на внедрение в них вирусов. У здорового человека его концентрация в плазме мала. Но при вирусных заболеваниях его концентрация увеличивается.
Глютелины — растительные белки, не растворимые в нейтральныхсолевых растворах и в этиловом спирте растворяются только в разбавленных (0,2%) растворах щелочей. Содержатся главным образом в семенах злаков. Изучены мало . Глютелины некоторых злаков называют глютенинами (от франц. gluten — клейковина). Наиболее изучен глютенин пшеницы.[c.297]