- •Foreword
- •About Programmer’s Heaven
- •About Faraz Rasheed
- •Contents In Summary
- •Tools of the trade
- •The C# Language
- •The .Net Architecture and .Net Framework
- •The Common Language Runtime (CLR)
- •MSIL (Microsoft Intermediate Language) Code
- •Just In Time Compilers (JITers)
- •The Framework Class Library (FCL)
- •The Common Language Specification (CLS)
- •The Common Type System (CTS)
- •Garbage Collection (GC)
- •The .Net Framework
- •C# compared to C++
- •The Visual Studio.Net IDE
- •Projects and Solutions
- •Toolbox, Properties and Class View Tabs
- •Writing Your First Hello World Console Application in C#
- •Working Without Visual Studio.Net
- •With Visual Studio.Net
- •Understanding the Hello World Application Code:
- •Namespaces in C#
- •The using Keyword
- •The class Keyword
- •The Main() Method
- •Printing on the Console
- •Comments
- •Important points to remember
- •A more interactive Hello World Application
- •Discussing a more interactive Hello World Application
- •2. C# Language Fundamentals
- •Lesson Plan
- •Basic Data Types and their mapping to CTS (Common Type System)
- •Integral Types
- •Floating Point Types
- •Other Types
- •Variables
- •Constant Variables or Symbols
- •Naming Conventions for variables and methods
- •Operators in C#
- •Arithmetic Operators
- •Operand
- •Prefix and Postfix notation
- •Assignment Operators
- •Operand
- •Relational Operators
- •Operand
- •Operand
- •Other Operators
- •Operand
- •Operator Precedence
- •Flow Control And Conditional Statements
- •The if...else statement
- •The switch...case statement
- •Loops In C#
- •The for Loop
- •Some important points about the for loop
- •The do...while Loop
- •while Loop
- •Arrays in C#
- •Array Declaration
- •Accessing the values stored in an array
- •foreach Loop
- •3. Classes and Objects
- •Lesson Plan
- •Concept of a Class
- •Objects
- •Fields
- •Data Type
- •Methods
- •Instantiating the class
- •Accessing the members of a class
- •Access Modifiers or Accessibility Levels
- •Access Modifier
- •Properties
- •Using Properties
- •Precautions when using properties
- •Static Members of the class
- •Some More about Methods
- •Constructors
- •Finalize() Method of Object class
- •Destructors
- •Method and Constructor Overloading
- •Overloading Constructors
- •Value types (out & ref Keywords)
- •Reference types
- •Some more about references and objects
- •4. Inheritance & Polymorphism
- •Lesson Plan
- •Inheritance
- •Inheritance in C#
- •Implementing inheritance in C#
- •Constructor calls in Inheritance
- •The base keyword - Calling Constructors of the base-class explicitly
- •Protected Access Modifier
- •The Protected internal Access Modifier
- •The sealed keyword
- •Object class - the base of all classes
- •Polymorphism
- •Using the reference of the base type for referencing the objects of child types
- •Using methods with the same name in the Base and the Sub-class
- •Overriding the methods - virtual and override keywords
- •The new keyword
- •Type casting the objects - Up-casting and Down-casting
- •The is and as keywords
- •Boxing and Un-boxing
- •5. Structures, Enumeration, Garbage Collection & Nested Classes
- •Lesson Plan
- •Structures (struct)
- •Defining a struct
- •Instantiating the struct
- •structs as Value Types
- •Enumeration
- •The Need for Enumeration
- •Using Enumeration (enum)
- •More about Enumerations
- •Garbage Collection in .Net
- •Destructors and Performance Overhead
- •System.GC.Collect() method
- •Nested Classes in C#
- •6. Abstract Classes & Interfaces
- •Lesson Plan
- •Abstract Classes
- •Interfaces
- •Implementing More Than One Interface
- •Explicit implementation of methods
- •Casting to an interface using is and as operators
- •An interface inheriting one or more interfaces
- •7. Arrays, Collections & String Manipulation
- •Lesson Plan
- •Arrays Revisited
- •Multidimensional Arrays
- •Instantiating and accessing the elements of multidimensional arrays
- •Instantiating and accessing Jagged Arrays
- •Some other important points about multidimensional arrays
- •The foreach Loop
- •Collections
- •The ArrayList class
- •The Stack class
- •The Queue class
- •Dictionaries
- •The Hashtable class
- •Constructing a Hashtable
- •Adding items to a Hashtable
- •Retrieving items from the Hashtable
- •Removing a particular item
- •Getting the collection of keys and values
- •Checking for the existence of a particular item in a hashtable
- •The SortedList class
- •String Handling in C#
- •The string class and its members
- •The StringBuilder class
- •8. Exception Handling
- •Lesson Plan
- •Exceptions Basics
- •The need for Exceptions
- •Exceptions in C# and .Net
- •Handling Exceptions using the try...catch...finally blocks
- •Use of the try...catch block
- •Exception class' Message and StackTrace Properties
- •The finally block
- •Catching Multiple Exceptions using multiple catch blocks
- •An important point to remember in multiple catch blocks
- •Other important points about Exception Handling in C#
- •Defining your own custom exceptions
- •Exception Hierarchy in the .Net Framework
- •Throwing an exception: the throw keyword
- •9. Delegates & Events
- •Lesson Plan
- •Delegates Basics
- •The type or signature of the method the delegate can point to
- •The delegate reference, that can be used to reference a method
- •3.The actual method referenced by the delegate
- •Calling the actual method through its delegate
- •Confusion in terminology
- •Delegates in the .Net Framework
- •Passing delegates to methods
- •Multicast Delegates
- •Implementing a Multicast Delegate
- •Removing a method from the multicast delegate's invocation list
- •Events and Event Handling
- •Event Handling in C#
- •A Clock Timer Example
- •Multicast events
- •Passing some data with the Event: Sub-classing System.EventArgs
- •10. WinForms & Windows Applications
- •Lesson Plan
- •Windows Applications and .Net
- •WinForm Basics
- •Building the "Hello WinForm" Application
- •Understanding the Code
- •Adding Event Handling
- •Visual Studio.Net & its IDE (Integrated Development Environment)
- •IntelliSense and Hot Compiler
- •Code Folding
- •Integrated Compiler, Solution builder and Debugger
- •Form Designer
- •Solution Explorer
- •Menus in the Visual Studio .Net IDE
- •Using Visual Studio.Net to build the "Hello WinForm" Application
- •Creating a new Project
- •Setting various properties of the form
- •Adding Controls to the Form
- •Adding Event Handling
- •Executing the application
- •The code generated by the Form Designer
- •Using More Controls
- •Using various controls in an application: Programmer's Shopping Cart
- •Designing the form and placing the controls
- •Writing Code for Event Handling
- •Some Important Points for designing Windows Applications
- •11. More Windows Controls & Standard Dialog Boxes
- •Lesson Plan
- •Collection Controls
- •List Box Control
- •Adding items to the list box
- •Accessing items in the list box
- •Removing items from the list box
- •List Box Events
- •Combo Box Control
- •Tree View
- •The TreeNode Editor
- •Adding/Removing items at runtime
- •Tree View Events
- •Image List Control
- •Attaching An Image List to different controls
- •List View Control
- •Two Image Lists in the List View Control
- •Adding items to the list view control using designer
- •Adding Items at runtime using code
- •Events for List View Control
- •Main Menu
- •Tool Bar
- •Date Time Picker
- •Windows Standard Dialog Boxes
- •Open File Dialog Box
- •Using the Open File Dialog Box
- •Save File Dialog Box
- •Font and Color Dialog Boxes
- •12. Data Access using ADO.Net
- •Lesson Plan
- •Introducing ADO.Net
- •Different components of ADO.Net
- •A review of basic SQL queries
- •SQL SELECT Statement
- •SQL INSERT Statement
- •SQL UPDATE Statement
- •SQL DELETE Statement
- •Performing common data access tasks with ADO.Net
- •Accessing Data using ADO.Net
- •Defining the connection string
- •Defining a Connection
- •Defining the command or command string
- •Defining the Data Adapter
- •Creating and filling the DataSet
- •A Demonstration Application
- •Loading tables
- •Filling the controls on the Form
- •Navigating through the records
- •Updating the table
- •Building the Application
- •Loading the table and displaying data in the form's controls
- •Initialing Commands
- •Adding Parameters to the commands
- •The ToggleControls() method of our application
- •Editing (or Updating) Records
- •Event Handler for the Save Button
- •Event Handler for the Cancel Button
- •Inserting Records
- •Deleting a Record
- •Using Stored Procedures
- •Sample Stored Procedures
- •UPDATE Stored Procedure
- •INSERT Stored Procedure
- •DELETE Stored Procedure
- •SELECT Stored Procedure
- •Using Stored Procedures with ADO.Net in C#
- •The modified InitializeCommands() method
- •Using Data Grid Control to View .Net data
- •A Demonstration Application for Data Grid Control
- •Second Demonstration - Using multiple related tables
- •Retrieving data using the SELECT command
- •Updating Records using INSERT, UPDATE and DELETE commands
- •13. Multithreading
- •Lesson Plan
- •What is Multithreading
- •Multithreading in C#
- •Thread Functionality
- •Static members of the System.Threading.Thread class
- •Instance members of the System.Threaing.Thread class
- •Thread Demonstration Example - Basic Operations
- •Thread Demonstration Example - Thread Priority
- •Thread Demonstration Example - Thread Execution Control
- •Using Join() to wait for running threads
- •Thread Synchronization
- •The C# Locking Mechanism
- •Threads may cause Deadlock
- •14. The File System & Streams
- •Lesson Plan
- •Working with the File System
- •Obtaining the Application’s Environment Information – The System.Environment class
- •Demonstration Application – Environment Information
- •Obtaining the paths of various Windows Standard folders – Environment.GetFolderPath()
- •Manipulating Files using System.IO.File and System.IO.FileInfo classes
- •System.IO.File class
- •Creating a file using Create() method
- •Copying and Moving a file using Copy() and Move() methods
- •Checking the existence of the file using Exists() method
- •Getting Attributes of a file using GetAttributes() method
- •System.IO.FileInfo class
- •A quick and simple example
- •Manipulating Directories (folders) using System.IO.Directory and System.IO.DirectoryInfo classes
- •System.IO.Directory class
- •Creating, deleting and checking for the existence of directories
- •Getting the contents (files and sub-directories) of a directory
- •System.IO.DirectoryInfo class
- •Demonstration application for the DirectoryInfo class
- •Streams
- •An overview of the different types of streams
- •The System.Stream class – the base of all streams in the .Net framework
- •Different types of file streams – Reading and Writing to files
- •Using System.IO.FileStream to read and write data to files
- •A string representing the path and name of the file
- •Opening and reading from a file
- •Using BinaryReader and BinaryWriter to read and write primitives to files
- •Using StreamReader and StreamWriter to read and write text files
- •Serialization and De-serialization
- •Implementing Serialization and Deserialization – A simple example
- •Formatters in Serialization
- •Preventing certain elements from Serializing – The [NonSerialized] attribute
- •Getting notified when Deserializing - the IDeserializationCallBack interface
- •Asynchronous Reading and Writing with Streams
- •A demonstration application
- •Issues Regarding Asynchronous Read/Write
- •Important points regarding the use of Streams
- •15. New Features In C# 2.0
- •C# evolves
- •The need for generics
- •Generic collections
- •Creating generic types
- •Constraining type parameters
- •Final thoughts on generics
- •Partial types
- •Nullable types
- •Anonymous methods in event handling
- •Adventures with anonymous methods
- •Final thoughts on C# 2.0
- •16. The Road Ahead
- •Learning More
- •Getting Help
- •Book.revision++
- •Good Luck!
Programmers Heaven: C# School
10. WinForms & Windows Applications
Lesson Plan
Today we will start building Windows Applications in C#. We will start by looking at the architecture of Windows Application and their support in .Net. Later, we will design our first "Hello WinForm" Application and learn about various windows form controls. Finally, we will look at how Visual Studio.Net eases the creation of Windows Applications.
Windows Applications and .Net
C# and .Net provide extensive support for building Windows Applications. The most important point about windows applications is that they are 'event driven'. All windows applications present a graphical interface to their users and respond to user interaction. This graphical user interface is called a 'Windows Form', or 'WinForm' for short. A windows form may contain text labels, push buttons, text boxes, list boxes, images, menus and vast range of other controls. In fact, a WinForm is also a windows control just like a text box, label, etc. In .Net, all windows controls are represented by base class objects contained in the System.Windows.Forms namespace.
WinForm Basics
As stated earlier, .Net provides the WinForm and other controls through base classes in the System.Windows.Forms namespace. The class System.Windows.Forms.Form is the base class of all WinForms in
.Net. In order to design a windows application, we need to:
1.Create a Windows Application project in Visual Studio.Net, or add references to System.Windows.Forms and System.Drawing to your current project. If you are not using Visual Studio at all, use the /reference option of the command line compiler to add these assemblies.
2.Write a new class to represent the WinForm and derive it from the System.Windows.Forms.Form class:
class MyForm : System.Windows.Form
{
...
}
3.Instantiate various controls, set their appropriate properties and add these to MyForm's Controls collection.
4.Write another class containing the Main() method. In the Main() method, call the System.Application.Run() method, supplying it with an instance of MyForm.
190
Programmers Heaven: C# School
class Test
{
static void Main()
{
Application.Run(new MyForm());
}
}
The Application.Run() method registers your form as a windows application in the operating system so that it may receive event messages from the Windows Operating System.
Building the "Hello WinForm" Application
Let's build our first windows application, which we will call "Hello WinForm". The application will present a simple window with a "Hello WinForm" greeting at the center. The source code of the program is:
using System;
using System.Windows.Forms; using System.Drawing;
namespace CSharpSchool
{
class Test
{
static void Main()
{
Application.Run(new MyWindow());
}
}
class MyWindow : Form
{
public MyWindow() : base()
{
this.Text = "My First Windows Application"; this.Size = new Size(300, 300);
Label lblGreeting = new Label(); lblGreeting.Text = "Hello WinForm"; lblGreeting.Location = new Point(100, 100);
this.Controls.Add(lblGreeting);
191
Programmers Heaven: C# School
}
}
}
Understanding the Code
At the start, we included three namespaces in our application:
using System;
using System.Windows.Forms;
using System.Drawing;
The System namespace, as we stated in the first lesson, is the necessary ingredient of all C# applications. In fact, the Application class that we used later in the Main() method is defined in this namespace. The System.Windows.Forms namespaces contains the base classes for windows controls, e.g. Form, Label and Button. Finally, including the System.Drawing namespace is necessary as it contains the classes related to the drawing of controls. The Size and Point classes used later in the program are actually defined in the System.Drawing namespace.
Later, we derived a new class, 'MyWindow', from the Form class defined in System.Windows.Forms.
class MyWindow : Form
{
...
}
In the constructor of MyWindow, we specified the size and title of the form (by setting the size and text properties). The size is defined using the System.Drawing namespace's Size class. We passed two integers to the constructor of Size to specify the width and the height of the form.
public MyWindow() : base()
{
this.Text = "My First Windows Application";
this.Size = new Size(300, 300);
Next in the constructor, we created a text label and added it to the Controls collection of the Form. A text label is used to write some text on the form. The System.Windows.Forms.Label class defines a text label in a Windows application. We set the text of the Label using its Text property, which is of the string type. All the controls contained by a form must be added to its Controls collection; hence we have also added our label to this collection.
public MyWindow() : base()
{
192
Programmers Heaven: C# School
this.Text = "My First Windows Application"; this.Size = new Size(300, 300);
Label lblGreeting = new Label(); lblGreeting.Text = "Hello WinForm"; lblGreeting.Location = new Point(100, 100);
this.Controls.Add(lblGreeting);
}
Finally, we have created a Test class containing the Main() method. In the Main() method, we have instantiated the MyWindow class and passed its reference to the Application.Run() method so it may receive messages from the Windows Operating System.
When we execute the above code, the following screen is displayed:
To close the application, press the close button on the title bar.
Adding Event Handling
Let's now add a button labeled 'Exit' to the form. The 'Exit' button will close the application when it is clicked. In
.Net, Push Buttons are instances of the System.Windows.Forms.Button class. To associate some action with the button click, we need to create an event handler and register (or add) it to the Button's Click event. Below is the code for this application.
193
Programmers Heaven: C# School
using System;
using System.Windows.Forms; using System.Drawing;
namespace CSharpSchool
{
class Test
{
static void Main()
{
Application.Run(new MyWindow());
}
}
class MyWindow : Form
{
public MyWindow() : base()
{
// Form
this.Text = "My First Windows Application"; this.Size = new Size(300, 300);
this.StartPosition = FormStartPosition.CenterScreen;
// Label
Label lblGreeting = new Label(); lblGreeting.Text = "Hello WinForm"; lblGreeting.Location = new Point(100, 100);
// Button
Button btnExit = new Button(); btnExit.Text = "Exit";
btnExit.Location = new Point(180, 180); btnExit.Size = new Size(80, 30);
btnExit.Click += new EventHandler(BtnExitOnClick);
// Adding controls to Form
this.Controls.AddRange(new Control[] {lblGreeting, btnExit});
}
public void BtnExitOnClick(object sender, EventArgs e)
{
Application.Exit();
194
Programmers Heaven: C# School
}
}
}
In the constructor of MyWindow, first we have set certain properties of the Form. In this code, we have also used the StartPosition property of the Form, which sets the position of the form on the screen when the application starts. The type of this property is an enumeration called 'FormStartPosition'. We have set the start position of the form to the center of the screen.
The new inclusion in the code is the Exit button called 'btnExit'. We have created the button using the base class System.Windows.Forms.Button. Later, we have set various properties of the button, specifically its text label (Text), its Location and its Size. Finally, we have created an event handler method for this button called BtnExitOnClick(). In the BtnExitOnClick() method, we have written the code to exit the application. We have also subscribed this event handler to the btnExit's Click event (To understand the event handling in C#, see lesson 10 of the C# school). In the end, we have added both the label and the button to the form's Controls collection. Note that this time we have used the AddRange() method of form class to add an array of controls to the Controls collection of form. This method takes an array of type Control as its parameter.
When the code is run, the following window will be displayed:
Now you can press either the Exit Button or the close button at title bar to exit the application.
195
