
- •1. Предмет, метод и задачи статистики, как науки.
- •2. Статистическое наблюдение, его организационные формы, способы и ошибки
- •3. Виды статистического наблюдения
- •5. Сводка и группировка статистических материалов
- •6. Виды статистических таблиц
- •7. Правила составления статистических таблиц.
- •9. Ряды распределения и их виды.
- •10. Графическое изображение рядов распределения
- •11. Правила построения статистических графиков.
- •12. Абсолютные величины в статистике и их виды.
- •14. Средние величины в статистике. Степенная средняя. Средняя арифметическая. Простая и взвешенная.
- •15. Средние величины в статистике. Степенная средняя. Средняя гармоническая. Простая и взвешенная.
- •16. Средние величины в статистике. Степенная средняя. Средняя квадратическая. Простая и взвешенная.
- •Средняя квадратическая простая
- •Взвешенная
- •17. Средние величины в статистике. Степенная средняя. Средняя геометрическая. Простая и взвешенная.
- •18. Средняя арифметическая дискретного ряда распределения.
- •19. Средняя арифметическая интервального ряда распределения.
- •20. Свойства средней арифметической.
- •21. Алгоритм определения средней арифметической методом моментов.
- •22. Параметрические средние. Медианное значение.
- •23. Параметрические средние. Модальное значение.
- •24. Абсолютные показатели вариации.
- •25. Относительные показатели вариации.
- •26. Свойства дисперсии.
- •27. Порядок расчета дисперсии взвешенной и простой.
- •28. Алгоритм определения дисперсии методом моментов.
- •29. Сложение дисперсий изучаемого признака.
- •30. Виды, символика и условные обозначения при конструировании статистических индексов.
- •31. Индивидуальные базисные и цепные индексы. Соотношение между ними.
- •32. Общие индексы. Индексируемые величины и "веса" в общих индексах (на примере количественных и качественных показателей). Экономическая сущность числителя и знаменателя в общих индексах.
- •34. Общие индексы затрат на производство и себестоимости единицы продукции. Экономическая сущность числителя и знаменателя в общих индексах.
- •35. Взаимосвязь индексов (на примере количественных и качественных показателей).
- •36. Среднеарифметический индекс, тождественный агрегатному.
- •37. Среднегармонический индекс, тождественный агрегатному.
- •38. Индекс переменного состава. Статистический парадокс и его сущность.
- •39. Индекс постоянного состава и его сущность.
- •40. Индекс структурных сдвигов и его сущность.
- •41. Ряды динамики и их виды. Средний уровень ряда динамики.
- •42. Графическое изображение рядов динамики
- •43. Абсолютные показатели в рядах динамики.
- •44. Относительные показатели в рядах динамики.
- •45. Способы исчисления средних относительных величин в рядах динамики.
- •46. Показатели средней скорости изменения показателей рядов динамики.
- •47. Выравнивание рядов динамики по методу наименьших квадратов.
- •48. Выборочное наблюдение. Показатели выборочной и генеральной совокупности.
- •49. Средние ошибки выборочного наблюдения.
- •50. Предельные ошибки выборочного наблюдения.
- •51. Корреляционная и функциональная связь при изучении и измерении связей общественных явлений.
- •52. Корреляционный анализ и задачи статистики при изучении корреляционной связи.
- •53. Методы выявления наличия корреляционной связи.
- •Непараметрические методы оценки связи
- •54. Определение формы корреляционной связи.
- •55. Исчисление количественных характеристик корреляционной связи.
- •56. Измерение степени тесноты корреляционной связи.
18. Средняя арифметическая дискретного ряда распределения.
Ряд распределения – это ряды статистических данных характеризующ. группировку стат. совокупности по какому-либо 1 признаку, причем стат.данные должны быть расположены в определенном порядке,т. е расставлены либо по направлению возрастания или убывания.
Дискретная вариация признака – вариация при которой каждое отдельное значение, т.е варианта отличается от другой в ряду распределения на некоторую конечную постоянную величину обычно это целое число, т. е варианты даются в виде чисел.
Средняя арифметическая в дискретном ряду распределения находится в след.порядке:
x1*f1, x2*f2…xn*fn
x1f1+x2f2+…+Σxnfn
f1+f2+f3+…+fn=Σfi
Xa= Σxnfn/ Σfi
Средний возраст должен представлять собой результат равномерного распределения общего (суммарного) возраста всех студентов. Общий (суммарный) возраст всех студентов, согласно исходной информации в вышеприведенной таблице, можно получить как сумму произведений значений признака в каждой группе Xi, на число студентов с таким возрастом fi (частоты). Получим формулу:
Такую форму средней арифметической величины называют взвешенной арифметической средней. В качестве весов здесь выступают количество единиц совокупности (fi) в разных группах.
19. Средняя арифметическая интервального ряда распределения.
Непрерывная вариация – вариация, при которой каждое отдельное его значение,т.е варианты в расширенном ряду распределения может отличаться от другой стоящей рядом на любую величину.
Способ вычисления средн.арифметической интервального ряда распределения практически такой же,как и для дискретного ряда, однако в качестве множителей для вариантов принимается середина интервала,которая находится, как среднее арифметическое простая из нижней и верхней границы.
Xi=(Xmax-Xmin)/2
Если при группировке значения осредняемого признака заданы интервалами, то при расчете средней арифметической величины в качестве значения признака в группах принимают середины этих интервалов. Например, по данным следующей таблицы минимальную и максимальную величину веса студентов определить затруднительно, поэтому воспользуемся принципом «соседа» – применим размах соседнего интервала, который у второго и предпоследнего составляет 10 кг, значит первый интервал будет от 55 до 65 кг, а последний – от 80 до 90 кг. Середины интервалов определяем как полусумму нижней и верхней границы интервалов.
Группы студентов по весу, кг |
Количество студентов, чел. |
Середина интервала X |
Xf |
до 60 |
6 |
55 |
330 |
60 – 70 |
8 |
65 |
520 |
70 - 80 |
5 |
75 |
375 |
более 80 |
5 |
75 |
170 |
Итого |
21 |
66,429 |
1395 |
Средний вес студентов, рассчитанный по формуле средней арифметической взвешенной с заменой точных значений признака в группах серединами интервалов Xi, составит частное от деления итогов последнего и второго столбцов таблицы:
=
1395/21 = 66,429 (кг).
Полученное значение записано в итоговую строку таблицы в 3-м столбце.