
- •Введение.
- •Свойства жидкостей.
- •Гидростатика
- •Гидростатическое давление и его свойства.
- •Дифференциальные уравнения равновесия жидкости (уравнения л. Эйлера)
- •Уравнение гидростатики
- •Закон Паскаля
- •Пьезометрическая высота
- •Удельная потенциальная энергия
- •Лекция 3 Приборы для измерения давления
- •Силы давления жидкости на поверхности
- •Вектор силы давления жидкости на криволинейную стенку
- •Определение толщины стенок труб, воспринимающих внутреннее давление жидкости и силы в колене трубы.
- •Закон Архимеда и плавание тел
- •Остойчивость тел
- •Лекция 4. Гидродинамика.
- •Основные гидродинамические понятия.
- •Дифференциальные уравнения движения идеальной жидкости (уравнения Эйлера)
- •Дифференциальные уравнения неразрывности движущейся жидкости
- •Уравнение неразрывности
- •Лекция 5. Уравнение установившегося движения элементарной струйки идеальной жидкости (уравнение д.Бернулли)
- •Механическая энергия потока жидкости
- •4.4. Уравнение Данила Бернулли для потока реальной жидкости.
- •Примеры практического применения уравнения д. Бернулли Трубы Вентури
- •Гидродинамическая трубка Пито.
- •4.5.3. Гидродинамическая трубка Пито - Прандтля.
- •4.5.4. Водоструйный насос (эжектор).
- •Карбюратор.
- •Лекция 6. Гидравлические сопротивления и потери напора.
- •Режимы движения жидкости.
- •Силы трения и закон распределения скоростей при ламинарном и турбулентном режимах движения жидкости.
Гидродинамическая трубка Пито.
Гидродинамическая трубка Пито предназначена для определения местных скоростей (осредненных во времени) в точках живого сечения безнапорного потока жидкости (рис. 27).
Трубка Пито, впервые примененная в 1732 г. французским инженером-гидротехником А. Пито, представляет собой изогнутую под прямым углом трубку, устанавливаемую открытым концом отогнутой части навстречу потоку так, чтобы центр отверстия трубки совпал с точкой потока, в которой определяется скорость движения жидкости. Второй, верхний, конец трубки выводится из потока наружу.
Рис. 27. Гидродинамическая трубка Пито
(а) и эпюра распределения скоростей
(б) в безнапорном потоке жидкости
Чтобы получить
формулу скорости, напишем уравнение
Бернулли для горизонтальной струйки,
находящейся на расстоянии z
от дна потока,
выбрав сечение струйки так, чтобы сечение
I-I
находилось в непосредственной близости
от входного отверстия трубки, а сечение
II-II
совпадало с плоскостью входного отверстия
трубки. Потерями напора пренебрегаем.
За плоскость сравнения
принимаем дно потока. Имеем:
(81)
Заметим, что
;
=,
т.е. жидкость в трубке Пито не движется,
а стоит на месте;
;
тогда:
;
,
где
– глубина погружения трубки Пито от
свободной поверхности,м;
–высота подъема
жидкости выше уровня свободной
поверхности, м.
С учетом замечаний уравнение (81) запишется в следующем виде:
.
Обозначив
,
получим
или
,
(82)
Перемещая носик трубки по вертикали в сечении потока, определяют скорость жидкости в различных точках взятой вертикали и получают так называемую эпюру распределения скорости по данной вертикали живого сечения потока (рис. 27, б).
4.5.3. Гидродинамическая трубка Пито - Прандтля.
Гидродинамическая трубка Пито - Прандтля предназначена для измерения скорости течения жидкости в напорных трубопроводах (рис. 28).
Принципиально
трубка Пито - Прандтля состоит из двух
трубок (рис. 28, а), одна из которых
представляет собой обычный пьезометр
1, показывающий пьезометрический напор
,
а другая – трубка Пито 2, которая измеряет
величину полного
напора.
Рис. 28. Гидродинамическая трубка Пито-Прандтля
1 – пьезометр; 2 –трубка Пито.
Разность уровней
жидкости в обеих трубках
дает величину скоростного напора
,
по которой и определяется скорость.
4.5.4. Водоструйный насос (эжектор).
Струйный насос – насос трения, в котором одна жидкая среда перемещается внешним потоком другой жидкой среды.
Струйные насосы для нагнетания называются инжекторами, для отсасывания - эжекторами, для подъема – гидроэлеваторами.
Действие струйного насоса основываются на непосредственной передаче кинетической энергии одним потоком (рабочим) другому, имеющему меньшую кинетическую энергию (перекачиваемому - эжектируемому). Рабочая и перекачиваемая (эжектируемая) жидкости могут быть одинаковыми и различными. Струйные насосы, в которых рабочей и эжектируемой жидкостями является вода, называются водоструйными.
Водоструйный насос можно легко получить на основе трубы Вентури, организовав поток жидкости по оси трубы с высокой скоростью. На рис. 29 приведена принципиальная схема водоструйного насоса (эжектора).
В водоструйном
насосе рабочий поток с расходом Qр
под большим давлением
по трубопроводу
1 с соплом 2 на конце поступает в камеру
всасывания 3, сообщенной всасывающим
трубопроводом 7 с расходным резервуаром
8. Струя воды, вылетая из сопла 2 с большой
скоростью, создает разрежение в камере
всасывания 3 и соответственно во
всасывающем трубопроводе 7. За счет
вакуума из расходного резервуара 8 по
всасывающему трубопроводу 7 подсасывается
вода в количестве Q
(расход эжектируемой – перекачиваемой
жидкости).
Рис. 29. Схема водоструйного насоса (эжектора):
1 – трубопровод рабочей жидкости; 2 – сопло; 3 – камера всасывания;
4 – камера смешения; 5 – диффузор; 6 – напорный трубопровод
суммарного потока; 7 - всасывающий трубопровод; 8 – резервуара
расходный;
- расход рабочего потока жидкости;
- расход
эжектируемой
(перекачиваемой) жидкости;
- расход общего потока жидкости.
Из камеры смешения
4 общий поток с расходом
направляется в диффузор 5, где скорость
падает, и создается давление, необходимое
для движения жидкости по напорному
трубопроводу 6.
Струйные наосы обладают рядом существенных достоинств: простота конструкции, надежность работы, легкость изготовления, небольшие габариты и стоимость, простота эксплуатации.
Недостатком
водоструйных насосов является низкий
КПД
()
и относительно большой расход рабочей
жидкости
,
(в
раза
превышающий расход эжектируемой
жидкости).