- •4. Загальна класифікація матеріалів електронної техніки.
- •5. Тверді розчини. Системи з необмеженою розчинністю в твердому стані.
- •7. Механізм і кінетика росту кристалів з рідкої і твердої фаз.
- •9. Обмежені тверді розчини. Діаграми стану двокомпонентних систем з обмеженими твердими розчинами евтектичного типy.
- •10. Обмежені тверді розчини. Діаграми стану двокомпонентних систем з обмеженими твердими розчинами перитектичного типy.
- •11. Фізико-хімічні принципи легування матеріалів з різним типом хімічного зв’язку. Методи легування кристалів.
- •12. Методи вирівнювання складу кристалів ( активні і пасивні
- •13. Особливості легування склоподібних напівпровідників
- •14.Хімічний склад металевих сплавів високого опору, фізичні і хімічні властивості та використання в електроніці.
- •15.Технологічний процес одержання, характерні фізичні властивості та застосування кремнію.
- •16. Методи вирощування кристалів. Рекристалізація і перекристалізація.
- •17. Методи вирощування кристалів. Нормально напрямлена кристалізація розплаву. Метод Чалмерса,
- •18. Метод вирощування кристалів Чохральського
- •19.Провідникові матеріали на основі окислів металів, технологія, фізичні властивості і застосування.
- •20. Методи вирощування кристалів. Нормально напрямлена кристалізація розплаву. Методи Бріджмена, Бріджмена-Стокбаргера.
- •21. Трьохкомпонентні і багатокомпонентні системи. Зображення складу трьохкомпонентних систем. Трикутник Гіббса. Загальний метод зображення діаграми стану багатокомпонентних систем.
- •22. Тугоплавкі провідникові метали. Порошкова технологія та особливості виготовлення електротехнічних елементів на основі тугоплавких металів і їх застосування.
- •23. Піроелектричний ефект, матеріали піроелектрики і їх застосування в електроніці.
- •24. Технологічний процес одержання, характерні фізичні властивості та застосування германію.
- •25. Технологія алюмінію, фізичні властивості, промислові марки та застосування в електроніці
- •26. Фізико-хімічні основи процесів очистки та розділення сировинних компонент. Сорбційні методи очистки.
- •27. Вплив зовнішніх факторів на властивості матеріалів. Пластична деформація і термічна обробка металів і напівпровідників.
- •28. Класифікація провідникових матеріалів по типу і величині провідності, хімічному складу, температурі плавлення.
- •29. Аморфні матеріали: метали, напівпровідники, діелектрики. Халькогенідні склоподібні напівпровідники. Аморфний гідрогенізований кремній
- •32. Матеріали для твердотілих лазерів. Вимоги до активатора і матеріалу пасивного діелектрика. Будова робочого тіла yag лазерів
- •33. Двокомпонентні системи конденсованого типу. Діаграми стану з утворенням хімічної сполуки.
- •35. Одержання кристалів з рідких та твердих розчинів. Методи одержання кристалів з газової фази.
- •36. Фізико-хімічні основи процесів очистки та розділення сировинних компонент. Методи, які базуються на перегонці через газову фазу.
- •38. Ректифікація.
- •39. Нанокристалічні і наноструктуровані матеріали. Властивості і використання.
- •40. Електрети. Технологія властивості і застосування.
- •41. Полімерні електроізоляційні матеріали.
- •42. П’єзоелектричні кристали: характерні властивості, матеріали і застосування.
12. Методи вирівнювання складу кристалів ( активні і пасивні
Є два методи вирівнювання складу кристалів:
1)пасивний
Він полягає у визначенні такої концентрації домішки, що дозволяє викор кристал для заданої мети і відрізається з цього кристалу та частина, що дозволяє викор кристал для цієї мети.
2)активний
Він полягає в тому, що в розплав по відповідній програмі вводять зміни складу у процесі росту кристалу.
13. Особливості легування склоподібних напівпровідників
14.Хімічний склад металевих сплавів високого опору, фізичні і хімічні властивості та використання в електроніці.
Вимоги, пропоновані до провідникових матеріалів:
висока питома провідність;
задовільні механічні властивості як при обробці, так і при експлуатації;
легко й надійно паятися, зварюватися і т.д.;
бути доступними на вітчизняному ринку;
мати низьку вартість.
Практичне застосування як провідникові матеріали одержали мідь і алюміній.
Значення міді в цих марках становить від 99,9 до 99,99%. Максимальне значення міді містять марки М00к і М00б. Як провідникові матеріали використовують мідь М1 і М0. Найбільш шкідливою домішкою в міді є кисень. При підвищенні його вмісту істотно погіршуються механічні й технологічні властивості міді. Проявляється так звана "воднева хвороба" міді. У процесі одержання міді її віджигають у захисній атмосфері. Якщо ця атмосфера містить водень або вуглеводи, то вони при високій температурі здатні проникати в мідь, де з'єднуються з киснем, у результаті чого утворяться молекули води. За механічними характеристиками розрізняють мідь марок МТ і ММ.
Мідь МТ (твердотягнуту) одержують методом холодного протягання. Завдяки впливу наклепу вона має високу межу міцності при розтягуванні й мале відносне подовження, а також твердість і пружність.
Мідь ММ (м'яка відпалена) має малу твердість, невелику міцність і значне подовження при розриві.
Помітний вплив на механічні й електричні характеристики міді має температура. При нагріванні вище 200оС у результаті процесу рекристалізації механічні й електричні характеристики міді погіршуються. Крім того, питома провідність міді істотно залежить від наявності домішок. Так при вмісті в міді 0,5% домішок Zn, Cd, або Ag її питома провідність зменшується на 5%.
Алюміній– другий за значенням після міді провідниковий матеріал. Відноситься до легких металів (питома щільність алюмінію становить 2,6 [Мг/м3], а прокатаного 2,7 [Мг/м3]). Алюміній в 3,5 рази легший ніж мідь. Температурний коефіцієнт розширення, питома теплоємність та теплота плавлення алюмінію більші ніж у міді, а температура плавлення навпаки менше.
Його питомий опір ρ=0,028 [мкОм·м] в 1,63 рази більший ніж у міді ρ=0,0172 [мкОм·м]. В електротехніці використовують алюміній марки А1, що містить ≤ 5% домішок. Алюміній активно окислюється, вкриваючись тонкою оксидною плівкою, з великим електричним опором. Ця плівка захищає алюміній від подальшої корозії, але створює великий перехідний опір в місцях контакту алюмінієвих дротів і унеможливлює пайку алюмінію звичайними методами. Для пайки алюмінію використовують спеціальні пасти – припої або ультразвукові паяльники. У місці з’єднання алюмінію та міді виникає гальванічна корозія
Залізо (сталь)– найбільш дешевий та доступний з високою механічною міцністю метал, однак навіть чисте залізо у порівнянні з міддю та алюмінієм характеризується великим питомим опором ρ = 0,1 [мкОм ·м]. У сталі за рахунок вуглецю опір є ще більшим. У сталі при змінному струмі проявляється поверхневий ефект, тому активний опір стальних провідників змінному струму є більшим за омічний опір постійному струму. У якості провідникового матеріалу, як правило застосовують м’яку сталь із вмістом вуглецю 0,1÷0,15%. Для неї є характерними наступні параметри:
Срібло – білий, блискучий метал, стійкий проти окислення при нормальній температурі. Характеризується найменшим питомим опо-ром ρ. Високі механічні властивості срібла ( дають змогу промислово виготовляти з нього провідники різного діаметру аж до мікропроводів діаметром від 20 мкм і менше. Такий провід використовують для виготовлення контактів на невеликі струми. Як провідник, срібло використовують у виді гальванічного покриття у відповідних високочастотних пристроях.