
- •2.Ієрархія молекулярної організації клітини.
- •28. Гормони білкової природи. Їх біологічна дія.
- •3. Вода, як електроліт, кислоти, буферні системи живих організмів.
- •4.Роль вітчизняних вчених в розвитку біохімії спорту.
- •9. Третинна та четвертинна структури білків.
- •5.Найбільш важливі сполуки фосфору та вуглецю, їх біологічна роль.
- •6. Загальна характеристика білків. Класифікація та характеристика окремих класів.
- •7. Функції білків в організмі. Характеристика складних білків.
- •8.Первинна та вторинна структури білків. Навести приклади.
- •10. Класифікація амінокислот, їх будова. Роль пептидного зв’язку в утворенні білків.
- •22. Будова та біологічна роль гліцерофосфоліпідів.
- •16. Короткі відомості про вітаміни в12, в15, н, фолієвої кислоти. Їх біологічна роль, знаходження в природі, добова потреба.
- •17. Моносахариди. Будова, номенклатура. Основні представники.
- •18. Дисахариди. Будова, номенклатура. Основні представники.
- •19. Будова крохмалю, глікогену, клітковини. Біологічна роль.
- •20. Будова, біологічне значення найбільш важливих муко полісахаридів.
- •21. Будова та біологічна роль простих ліпідів. Тверді жири та олії. Стерини.
- •25. Особливості дії ферментів, як біологічних каталізаторів.
- •24.Хімічна природа ферментів. Будова ферментів-протеїнів та ферментів-протеїдів. Характеристика найбільш важливих коферментів.
- •23. Будова та біологічна роль найбільш важливих жирних кислот.
- •26. Класифікація ферментів. Загальна характеристика окремих класів ферментів.
- •27.Загальна характеристика гормонів. Класифікація. Представники окремих груп гормонів.
- •29. Гормони, похідні амінокислот, жирних кислот. Стероїдні гормони.
- •30. Дихотомчний шлях перетворення глюкози до піровиноградної кислоти. Утворення молочної кислоти. Енергетичний ефект.
- •31.Перетравлювання і всмоктування вуглеводів. Рівень глюкози в крові. Роль глюкози в крові. Роль печінки у вуглеводному обміні.
- •36. Перетворення та всмоктування ліпідів. Розщеплення жирів.
- •32. Аеробний шлях розщеплення глюкози. Цикл Кребса. Енергетичний ефект.
- •33. Динаміка молочної кислоти при м’язовій роботі.
- •34.Сучасні уявлення про механізм біологічного окислення: перетворення енергії в живих системах. Макроергічні сполуки. Роль атф в енергетичному обміні.
- •35. Окислювальне фосфорилювання, субтратне фосфорилювання. Вільне окиснення.
- •37. Обмін гліцерину. Енергетичний ефект окиснення гліцерину та окремого тригліцерину.
- •38. Обмін вищих жирних кислот. Енергетичний ефект окислення однієї з вищих жирних кисло.
- •39. Обмін простих білків. Утворення кінцевих продуктів обміну простих білків.
- •41. Білковий склад м’язової тканини. Характеристика окремих білків м’язів та їх біологічна роль.
- •42.Обмін води та мінеральних солей в організмі. Склад води в організмі та її стан в тканинах.
- •43. Механізми м’язового скорочення.
- •44. Спортивне тренування. Зміни, що відбуваються в м’язовій тканині під час тренувань.
- •45. Енергетика м’язового скорочення. Роль атф в цьому процесі та шляхи її ресинтезу.
- •40. Будова та біологічна роль нуклеїнової кислоти.
- •46. Біохімічна характеристика тренованого організму.
- •49. Біохімічні зміни в організмі спортсменів при заняттях циклічними та ациклічними видами спорту.
- •47. Біохімічні фактори, що зумовлюють прояв м’язопої сили, швидкості та витривалості.
- •48.Кисневе споживаннч при фізичному навантаженні, кисневий дефіцит та кисневий борг, «стійкий стан».
- •50. Поняття про тренувальний ефект. Основні методи тренування та їх біологічне обґрунтування.
- •51. Біохімічні зміни складу внутрішніх органів при м’язовій діяльності.
- •52.Біохімія м’язів при втомленні та під час відпочинку.
- •53. Біохімічні закономірності використання та відновлення речовин в м’язах під впливом тренувань.
- •54. Біохімічні особливості ростового організму. Реакції дитячого та юнацького організму на фізичні навантаження. Особливості тренування в дитячому та юнацькому віці.
- •55. Біохімічні зміни в організмі при роз тренуванні та перетренуванні.
- •56. Передстартовий стан та відновний період окремого виду спорту (за вибором).
- •57. Пластична та енергетична функція харчуваня. Необхідність організму у вітамінах та мінеральних речовинах при заняттях різними видами спорту.
- •59.Витрати енергії в організмі спортсменів в залежності від довжини дистанції.
- •58.Взаємовідносини функціонального та пластичного обміну у різних вікових групах.
- •60. Характеристика вправ при заняттях спортивним «єдиноборством» (важка атлетика, боротьба). Механізм енергозабезпечення виконання цих вправ.
- •61. Характеристика вправ при заняттях спортивним «єдиноборством» (бокс, фехтування). Механізм енергозабезпечення виконання цих вправ.
- •62.Характеристика вправ при заняттях бігом на 100 та 200 м. Біохімічні зміни в організмі спортсменів і механізм енергозабезпечення цих вправ.
- •63. Характеристика вправ при заняттях бігом на 400 та 800 м. Біохімічні зміни в організмі спортсменів і механізм енергозабезпечення цих вправ.
- •64. Характеристика вправ при заняттях бігом на 1000 та 1500 м. Біохімічні зміни в організмі спортсменів і механізм енергозабезпечення цих вправ.
- •65. Характеристика вправ при заняттях бігом на 3000 та 10000 м. Біохімічні зміни в організмі спортсменів і механізм енергозабезпечення цих вправ.
- •66. Характеристика вправ при заняттях бігом на 15, 20 та 30км. Біохімічні зміни в організмі спортсменів і механізм енергозабезпечення цих вправ.
34.Сучасні уявлення про механізм біологічного окислення: перетворення енергії в живих системах. Макроергічні сполуки. Роль атф в енергетичному обміні.
Обмін енергії включає в себе процеси вивільнення, накопичення і використання енергії, що утворюється при розпаді поживних речовин в організмі.
Особливість цих процесів полягає в тому, що кінцеві етапи вивільнення енергії та її запасання при розпаді різних речовин однакові.
Основним носієм енергії в природі є електрон. Одержавши кількість енергії він переходить на більш високий енергетичний рівень, тобто збуджується. Переходячи на більш низьку енергетичну орбіту, електрон віддає енергію. Якщо ця енергія витрачається на виконання роботи, то вона називається вільною. Не використана на роботу енергія, переходить в тепло і вважається розтраченою.
Особливістю перерахованих сполук являється те, що при розпаді енергії макроергічних сполук не розсіюється, а переноситься на другі сполуки. Це можна спостерігати на прикладі АТФ.
Для її утворення потрібні АДФ, Н3Р04 і деяка кількість енергії. Відповідно при розпаді утворюються вихідні речовини і виділяється енергія.
+ енергія
АТФ
АДФ + Н3РО4
- енергія
Таким чином АТФ є переносником енергії і зв'язуює між собою процеси, що йдуть з виділенням енергії.
Процес вивільнення енергії можна розбити на три етапи.
І. На першому етапі, який протікає в шлунково-кишковому тракті проходить розщеплення високомолекулярних сполук і всмоктування утворених мономерів. Так білки розпадаються до амінокислот, жири до гліцерину та вищих жирних кислот, вуглеводи до моносахаридів. На першому етапі вивільняється 0,1% енергії.
ІІ. На другому етапі мономери розпадаються в клітинах до більш простих сполук, котрі можуть бути однаковими у різних мономерів. Так при окисленні вуглеводів, жирів, амінокислот хоч і різними шляхами, утворюється одна і таж речовина - ацетил КоА.
На другому етапі вивільняється приблизно третя частина всієї енергії, розщеплених речовин.
Ш. Третій етап представляє собою повне окислення ацетил-КоА в циклі Кребса з утворенням вуглекислого газу і вивільненням водню. Цей етап протікає однаково у всіх клітинах, точніше в матриксі мітохондрій. Цикл Кребса представляє собою замкнуту систему реакцій, що починається зі взаємодії ацетил-КоА і щавлево-оцтової кислоти з утворенням лимонної кислоти, котра проходячи через ряд стадій, знову перетворюється в щавлево-оцтову кислоту. Серед других сполук циклу Кребса особливе значення має ізолимонна, а-кетоглутарова, янтарна та яблучна кислоти. Ці кислоти і окислюються в циклі Кребсу. Окислення каталізується ферментами дегідрогеназами, коферментами яких є похідні вітамінів, нікотинової кислоти і рибофлавіну (НАД, НАДФ, ФАД).
Вивільнена енергія частково витрачається на утворення тепла, а більша частина на утворення АТФ. При цьому одні речовини при своєму окисленні вивільняють енергію достатню для синтезу трьох молекул АТФ тоді як інші тільки для двох молекул АТФ.
Синтез АТФ проходить двома шляхами - окислювального фосфорування, тобто АТФ утворюється шляхом приєднання до АДФ неорганічного фосфату з використанням енергії, що вивільнилася під час окислення різних речовин. Всі компоненти ланцюга біологічного окислення знаходяться на внутрішній мембрані мітохондрій.
В організмі існує і другий шлях синтезу АТФ. Деякі речовини в ході перетворень накопичують в своїх зв’язках достатню кількість енергії, яку можуть передати для синтезу АТФ. Цей шлях синтезу носить назву субстратного фосфорування. Наприклад, при розпаді вуглеводів утворюється фосфоепол-піровиноградна кислота, що має запас енергії в фосфатному зв’язку. При взаємодії с АДФ вказана кислота передає енергію цього зв’язку на синтез АТФ.