
- •2.Ієрархія молекулярної організації клітини.
- •28. Гормони білкової природи. Їх біологічна дія.
- •3. Вода, як електроліт, кислоти, буферні системи живих організмів.
- •4.Роль вітчизняних вчених в розвитку біохімії спорту.
- •9. Третинна та четвертинна структури білків.
- •5.Найбільш важливі сполуки фосфору та вуглецю, їх біологічна роль.
- •6. Загальна характеристика білків. Класифікація та характеристика окремих класів.
- •7. Функції білків в організмі. Характеристика складних білків.
- •8.Первинна та вторинна структури білків. Навести приклади.
- •10. Класифікація амінокислот, їх будова. Роль пептидного зв’язку в утворенні білків.
- •22. Будова та біологічна роль гліцерофосфоліпідів.
- •16. Короткі відомості про вітаміни в12, в15, н, фолієвої кислоти. Їх біологічна роль, знаходження в природі, добова потреба.
- •17. Моносахариди. Будова, номенклатура. Основні представники.
- •18. Дисахариди. Будова, номенклатура. Основні представники.
- •19. Будова крохмалю, глікогену, клітковини. Біологічна роль.
- •20. Будова, біологічне значення найбільш важливих муко полісахаридів.
- •21. Будова та біологічна роль простих ліпідів. Тверді жири та олії. Стерини.
- •25. Особливості дії ферментів, як біологічних каталізаторів.
- •24.Хімічна природа ферментів. Будова ферментів-протеїнів та ферментів-протеїдів. Характеристика найбільш важливих коферментів.
- •23. Будова та біологічна роль найбільш важливих жирних кислот.
- •26. Класифікація ферментів. Загальна характеристика окремих класів ферментів.
- •27.Загальна характеристика гормонів. Класифікація. Представники окремих груп гормонів.
- •29. Гормони, похідні амінокислот, жирних кислот. Стероїдні гормони.
- •30. Дихотомчний шлях перетворення глюкози до піровиноградної кислоти. Утворення молочної кислоти. Енергетичний ефект.
- •31.Перетравлювання і всмоктування вуглеводів. Рівень глюкози в крові. Роль глюкози в крові. Роль печінки у вуглеводному обміні.
- •36. Перетворення та всмоктування ліпідів. Розщеплення жирів.
- •32. Аеробний шлях розщеплення глюкози. Цикл Кребса. Енергетичний ефект.
- •33. Динаміка молочної кислоти при м’язовій роботі.
- •34.Сучасні уявлення про механізм біологічного окислення: перетворення енергії в живих системах. Макроергічні сполуки. Роль атф в енергетичному обміні.
- •35. Окислювальне фосфорилювання, субтратне фосфорилювання. Вільне окиснення.
- •37. Обмін гліцерину. Енергетичний ефект окиснення гліцерину та окремого тригліцерину.
- •38. Обмін вищих жирних кислот. Енергетичний ефект окислення однієї з вищих жирних кисло.
- •39. Обмін простих білків. Утворення кінцевих продуктів обміну простих білків.
- •41. Білковий склад м’язової тканини. Характеристика окремих білків м’язів та їх біологічна роль.
- •42.Обмін води та мінеральних солей в організмі. Склад води в організмі та її стан в тканинах.
- •43. Механізми м’язового скорочення.
- •44. Спортивне тренування. Зміни, що відбуваються в м’язовій тканині під час тренувань.
- •45. Енергетика м’язового скорочення. Роль атф в цьому процесі та шляхи її ресинтезу.
- •40. Будова та біологічна роль нуклеїнової кислоти.
- •46. Біохімічна характеристика тренованого організму.
- •49. Біохімічні зміни в організмі спортсменів при заняттях циклічними та ациклічними видами спорту.
- •47. Біохімічні фактори, що зумовлюють прояв м’язопої сили, швидкості та витривалості.
- •48.Кисневе споживаннч при фізичному навантаженні, кисневий дефіцит та кисневий борг, «стійкий стан».
- •50. Поняття про тренувальний ефект. Основні методи тренування та їх біологічне обґрунтування.
- •51. Біохімічні зміни складу внутрішніх органів при м’язовій діяльності.
- •52.Біохімія м’язів при втомленні та під час відпочинку.
- •53. Біохімічні закономірності використання та відновлення речовин в м’язах під впливом тренувань.
- •54. Біохімічні особливості ростового організму. Реакції дитячого та юнацького організму на фізичні навантаження. Особливості тренування в дитячому та юнацькому віці.
- •55. Біохімічні зміни в організмі при роз тренуванні та перетренуванні.
- •56. Передстартовий стан та відновний період окремого виду спорту (за вибором).
- •57. Пластична та енергетична функція харчуваня. Необхідність організму у вітамінах та мінеральних речовинах при заняттях різними видами спорту.
- •59.Витрати енергії в організмі спортсменів в залежності від довжини дистанції.
- •58.Взаємовідносини функціонального та пластичного обміну у різних вікових групах.
- •60. Характеристика вправ при заняттях спортивним «єдиноборством» (важка атлетика, боротьба). Механізм енергозабезпечення виконання цих вправ.
- •61. Характеристика вправ при заняттях спортивним «єдиноборством» (бокс, фехтування). Механізм енергозабезпечення виконання цих вправ.
- •62.Характеристика вправ при заняттях бігом на 100 та 200 м. Біохімічні зміни в організмі спортсменів і механізм енергозабезпечення цих вправ.
- •63. Характеристика вправ при заняттях бігом на 400 та 800 м. Біохімічні зміни в організмі спортсменів і механізм енергозабезпечення цих вправ.
- •64. Характеристика вправ при заняттях бігом на 1000 та 1500 м. Біохімічні зміни в організмі спортсменів і механізм енергозабезпечення цих вправ.
- •65. Характеристика вправ при заняттях бігом на 3000 та 10000 м. Біохімічні зміни в організмі спортсменів і механізм енергозабезпечення цих вправ.
- •66. Характеристика вправ при заняттях бігом на 15, 20 та 30км. Біохімічні зміни в організмі спортсменів і механізм енергозабезпечення цих вправ.
25. Особливості дії ферментів, як біологічних каталізаторів.
Каталіз - процес прискорення хімічної реакції під впливом каталізатора, який приймає участь у даному процесі, але до кінця реакції залишається хімічно незмінним. Каталізатори бувають органічні та неорганічні. Органічні каталізатори - це ферменти.
Між молекулами, які вступають в реакцію, існують сили притягування і відштовхування.
При недостатньому запасі енергії молекули необхідно активізувати, тобто додати їм необхідну кількість енергії, що називається енергією активізації. Активація молекул відбувається різними шляхами: нагріванням, опроміненням, підвищенням тиску і за допомогою каталізаторів.
Суть дії каталізаторів заключається в тому, що вони в нормальних фізіологічних умовах викликають перебудову субстрату за рахунок внутрішньо молекулярної перебудови. Це призводить до зниження енергії активізації і молекули можуть взаємодіяти без залучення додаткової енергії. Крім того, активовані молекули взаємодіють набагато швидше.
Характеристика ферментативного каталізу.
Ферменти є природними біологічними каталізаторами, і тому мають подібні властивості з неорганічними каталізаторами.
Суть ферментативної реакції характеризується слідуючими рівняннями.
Е+S
ЕS
Е + Р
Е - фермент, S - субстрат, Р - продукти реакції. ЕS - фермент субстратний комплекс.
Але ферменти
відрізняються від неорганічних
каталізаторів рядом параметрів. Ферменти
на відміну від неорганічних каталізаторів
є високомолекулярними полімерами, мають
високу специфічність, низький оптимум
температури (35-45ºС) фізіологічний
діапазон рН, діють при атмосферному
тиску і мають зворотність дії і велику
швидкість ферментативної реакції.
Ферментативна реакція може йти як у прямому так і в зворотньому напрямку.
Активність ферментів може змінюватися в залежності від статі, віку, фізіологічного стану організму. Це не властиво неорганічним каталізаторам.
Розмір молекули ферменту не відповідає розміру молекули субстстрату. Фермент є по своїй природі білком і має велику молекулярну масу в порівнянні з низькомолекулярним субстратом. Крім того, було відмічено, що навіть після відщеплення від молекули ферменту деякої кількості амінокислот, він зберігає свої властивості. Все це дає підстави стверджувати, що фермент діє не всією молекулою, а деякою ділянкою, розташованою на поверхні ферменту. Ця ділянка відповідає структурі субстрату і називається активним центром. Він складається з різноманітних функціональних груп, що представляють радикали амінокислот, утворюючих первинну структуру ферменту.
24.Хімічна природа ферментів. Будова ферментів-протеїнів та ферментів-протеїдів. Характеристика найбільш важливих коферментів.
Це білки, що мають велику молекулярну масу рибонуклеаза – 12. 700 в.о., пепсин - 35.000 т. в.о. Ферменти, як і всі білки мають первинну, вторинну, третинну, четвертинну структури.
Первинна структура представляє собою послідовне з’єднання амінокислот і зумовлена спадковими особливостями організму. Саме первинна структура в значній мірі характеризує індивідуальність ферменту.
Вторинна структура представляє α – спіраль.
Третинна - має вид глобули і приймає участь у формуванні активного центру та інших властивостей ферментативної молекули.
Багато ферментів мають четвертинну структуру, що представляє собою об'єднання декількох субодиниць, що мають три рівні організації молекул. Ці субодиниці можуть розрізнятися між собою, як в кількісному, так і в якісному співвідношенні. Це привело до появи груп споріднених ферментів - ізоферментів, що представляють собою ряд форм одного і того ж ферменту. Вони каталізують одну і ту ж реакцію, але розрізняються по місцю локалізації, складу, і тому мають різні фізико-хімічні властивості: швидкості руху в електричному полі, оптиму температури.
Ізоферменти існують більш ніж у 100 ферментів. Наприклад, ЛДГ - каталізує утворення і окислення молочної кислоти. Цей фермент має четвертинну структуру і складається з чотирьох субодиниць, дві з яких представлені типом Н (heat - серце), дві М (muscul - м'язи). За назвою органів де знайдена їх найбільша активність. Різне співвідношення цих субодиниць призвело до появи 5-и ізоферментів ЛДГ.
ЛДГ - 1 (4Н) серце, печінка, мозок.
ЛДГ - 2 (ЗНІМ) нирки, легені.
ЛДГ - З (2Н2М) нирки, легені, мозок.
ЛДГ - 4 (ІНЗМ) - печінка, м'язи.
ЛДГ - 5 (4М) - печінка, м'язи.
Ці ізоферменти позначаються цифрами і в залежності від швидкості руху в електричному полі розділяються методом електрофорезу на 5 фракцій.
Відмінність у хімічному складі ферментів послужила основою для поділу їх на ферменти-протеїни та ферменти-протеїди.
Протеїни складаються тільки з амінокислот. Це в основному гідролітичні ферменти (пепсин, амілаза, ліпаза) ШКТ.
Складні ферменти протеїди мають небілкову частину кофермент і білкову - апофермент.
Коферменти можуть бути представленні мінеральними речовинами, їх називають металоферментами, активними формами вітамінів і нуклеозидтрифосфатами. Присутність вітамінів у складі ферментів визначає їх біологічне значення.