Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Тепломассообмен.doc
Скачиваний:
170
Добавлен:
01.03.2016
Размер:
1.96 Mб
Скачать

Тепломассообмен

(весенний семестр)

Литература

1. Хрусталев Б.М. и др. Тепло- и массообмен: учеб. пособие в 2ч. Мн. 2007.

2. Аметистов Е.В. и др. Тепло- и массообмен: справочник. М. 1982.

3. Юдаев Б.Н. Теплопередача. М. 1991.

4. Цветков Ф.Ф. Задачник по тепломассообмену. М. 2008

Часть1. Основные положения и определения Основные определения

Теплообмен или теплоперенос - самопроизвольный необратимый процесс распространения теплоты в пространстве, обусловленный разностью температур. различают три элементарных способа переноса теплоты:

1) теплопроводность - перенос, обусловленный взаимодействием микрочастиц соприкасающихся тел (или частей одного тела), имеющих разную температуру;

2) конвекция - перенос вследствие пространственного перемещения вещества. Наблюдается в текучих средах (жидкости, газы) и, как правило, сопровождается теплопроводностью. Процесс обмена теплотой между твердой поверхностью и жидкостью (газом) путем теплопроводности и конвекции одновременно называют конвективным теплообменом или теплоотдачей. Процесс переноса теплоты от одной жидкой среды к другой через разделяющую их твердую стенку - теплопередачей.

3) тепловое излучение - перенос посредством электромагнитного поля с двойным взаимным превращением - теплоты в энергию поля и наоборот.

В реальных случаях переноса теплоты элементарные способы обычно сопутствуют друг другу; если при этом вклад хотя бы двух из них существенен, то говорят о сложном теплообмене.

Для практических расчетов стационарных процессов теплообмена с не очень сложными граничными условиями установились формулы:

;

,

где - количество теплоты, отданной или полученной данной средой, Дж;

Q - тепловой поток, Вт;

- некоторым образом осредненная температура поверхности тела (стенки) и характерная температура окружающей среды (например, температура газа (воздуха) на бесконечном удалении от погруженного в него тела или средняя по сечению канала температура жидкости), К;

- характерные температуры греющей и обогревающей сред, разделенных перегородкой (неподвижной или подвижной), К;

F - расчетная площадь поверхности теплообмена, м2;

τ - время протекания процесса, с.

Из приведенных формул видно. что тепловой поток Q существенно зависит от разности температур и размеров поверхности теплообмена.

Множители пропорциональности α и k, Вт/(м2∙К), называются соответственно коэффициентами теплоотдачи и теплопередачи.

Температурное поле

Совокупность значений температуры всех точек тела в данный момент времени представляет температурное поле

,

где Т - температура; х, у, z - пространственные координаты; τ - время.

Последняя зависимость отвечает наиболее общему трехмерному случаю, когда температура изменяется по каждой из трех пространственных координат. А так же случаю неустановившегося или нестационарного поля, когда температура изменяется во времени. Возможны более простые случаи. Температурное поле может быть одномерным, когда температура зависит только от одной координаты. Если температура остается постоянной с течением времени, то поле называют стационарным (установившимся).

Геометрическое место точек, имеющих одинаковую температуру, образуют изотермическую поверхность. Форма и положение такой поверхности в пространстве меняются во времени, если поле нестационарное и остаются неизменными, если поле стационарное. Кривые, образующиеся в результате пресечения изотермической поверхности и плоскости, называют изотермами.

Изменение температуры в пространстве характеризуется градиентом температуры grad T , который определяется как вектор, направленный по нормали к изотермической поверхности и равный частной производной температуры по этому направлению.

Передача теплоты вследствие теплопроводности происходит всегда в направлении уменьшения температуры. количество теплоты, переносимое за единицу времени через произвольную изотермическую поверхность площадью F, называется тепловым потоком Q. Тепловой поток, приходящийся на единицу площади изотермической поверхности, называется плотностью теплового потока q, Вт/м2. связь между этими величинами устанавливается из их определений:

; .

скалярная величина q может рассматриваться как модуль вектора плотности теплового потока , направление которого совпадает распространения теплоты в данной точке.