
- •1. Мембранная система клетки
- •1.1. Плазмолемма
- •1.2. Плазматическая сеть
- •1.3. Пластинчатый комплекс
- •1.4. Лизосомы
- •1.5. Другие органоиды мембранной системы
- •1.5.1. Пероксисомы
- •1.5.2. Эндосомы
- •1.5.3. Секреторные везикулы и гранулы
- •1.5.4. Вакуоли и сферосомы растительных клеток
- •2. Рибосомы
- •2.1. Локализация рибосом в клетке
- •2.2. Рибосомы прокариот и эукариот
- •2.3. Морфология рибосом
- •2.4. Химический состав рибосом
- •Рибосомальные рнк
- •2.5. Белоксинтезирующая система
- •Бесклеточная система трансляции
- •2.6. Биосинтез белка
- •3. Цитоскелет
- •3. 1. Микрофиламенты
- •3. 2. Микротрубочки
- •Связанные с микротрубочками белки
- •3. 3. Промежуточные филаменты
- •3. 4. Микротрабекулярная сеть
- •4. Митохондрии и пластиды
- •4. 1. Митохондрии
- •4.1.1. Ультраструктура митохондрий
- •4.1.2. Функции митохондрий
- •4.1.3. Размножение митохондрий
- •4.1.4. Гипотезы происхождения митохондрий
- •4.2. Пластиды
- •4.2.1. Хлоропласт
- •4.2.2. Геном хлоропластов
- •4.2.3. Размножение и превращения пластид
- •5. Клеточное ядро
- •5.1. Структура клеточного ядра
- •5. 2. Хроматин
- •5. 2. 1. Свойства эукариотической днк
- •5. 2. 2. Белки хроматина
- •5.2.3. Уровни структурной организации хроматина
- •5.3. Ядрышко
- •6. Включения
- •6.1.Экзогенные включения
- •6.2. Эндогенные включения
- •6.3.Вирусные включения
- •7. Размножение и гибель клеток
- •7.1. Клеточный цикл и митоз
- •7.2. Регуляция клеточного цикла и митоза
- •7.3. Апоптоз
- •7.4. Мейоз
- •8. Эпителиальные ткани
- •8.1. Общая характеристика эпителиев
- •Морфологическая классификация эпителиев
- •8.2. Эпителий кишечника
- •8.3. Эпидермис
- •8.4. Железистый эпителий
- •Морфологическая классификация экзокринных желез
- •9. Ткани внутренней среды
- •9.1. Рыхлая волокнистая соединительная ткань
- •9.2. Плотные соединительные ткани
- •9.3. Специальные соединительные ткани
- •Разновидности жировой ткани
- •9.4. Хрящевая ткань
- •9.5. Костная ткань
- •9.6. Кровь.
- •9.6.1. Форменные элементы крови
- •9.6.2. Гистогенез крови
- •10. Мышечные ткани
- •Морфофизиологическая классификация мышечных тканей
- •Гистогенетическая классификация мышечных тканей
- •10.1. Поперечно-полосатая мышечная ткань
- •Белые и красные мионы млекопитающих
- •10.2. Сердечная мышечная ткань
- •10.3. Гладкая мышечная ткань
- •10.4. Гистогенез мышечных тканей
- •11. Нервная ткань
- •11. 1. Клетки нервной ткани
- •Классификация и функции клеток нейроглии
- •11.2. Нервные волокна
- •11.3. Синапсы
- •11.4. Нервные окончания
4.2. Пластиды
Пластиды – это двумембранные органоиды, которые характерны для растительных клеток. Они были открыты А. Левенгуком в 1676 г. У высших растений имеется несколько типов пластид, отличающихся составом пигментов, структурой и функциями - хлоропласты, лейкопласты, амилопласты и хромопласты.Кроме высших растений пластиды обнаружены также у некоторых водорослей и простейших. Количество пластид в клетке может колебаться от нескольких десятков до сотен. В среднем клетка высших растений содержит около 30 пластид. На самом деле все пластиды являются разновидностями одного органоида – хлоропласта.
4.2.1. Хлоропласт
Хлоропласты высших растенийпредставляют собой тельца овальной формы шириной 24 мкм и длиной 410 мкм. Они имеют две мембраны толщиной по 7 нм с межмембранным пространством шириной около 30 нм. Как и у митохондрий, наружная и внутренняя мембраны хлоропласта отличаются проницаемостью и другими физико-химическими свойствами.
Внутренняя мембрана хлоропластов образует протяженные складки – ламеллы. На ламеллах располагаются плоские мембранные цистерны дисковидной формы –тилакоиды, имеющие полость шириной 2030 нм. Они собраны в комплексы наподобие столбика монет –граны. Тилакоиды уложены в гране таким образом, что между соседними мембранами остается пространство шириной 2 нм. Число тилакоидов в гране может достигать нескольких десятков.
Внутри хлоропласта между мембранными структурами содержится мелкодисперсное вещество, формирующее матрикс, или строму. У некоторых хлоропластов и других пластид в строме обнаруживаются включенияпластоглобулы, крахмальные зерна и кристаллы белка.
В хлоропластах осуществляется фотосинтез, в результате которого из углекислого газа и воды с использованием энергии света образуется органическое вещество и выделяется кислород. Процесс фотосинтеза подразделяется на световую и темновую фазы.
Световая фазафотосинтеза идет в мембранах тилакоидов с участием зеленого пигмента хлорофилла, который поглощает кванты света и запускает гидролиз воды (реакция Хилла). Образованные при фотолизе воды электроны передаются по цепи транспорта электронов, сопряженной с протонными насосами и АТФ-синтетазами.
Для более полного использования энергии света в хлоропластах имеются фотосистемы IиII, настроенные на длинноволновую и коротковолновую области спектра. Один реакционный центр фотосистем содержит около 300 молекул хлорофилла. ФотосистемаIIобеспечивает фотолиз воды и высвобождение из нее электронов и протонов, тогда как фотосистемаIотвечает за восстановление акцепторной молекулы никотинамидадениндинуклеотидфосфата (НАДФ). В транспорте электронов, который организован наподобие дыхательной цепи митохондрий, принимают участие цитохромыb6,bиf, медьсодержащий белок пластоциан, аналоги цитохромов – ферродоксины и аналоги убихинона – пластохинон и филлохинон (витаминK1).
Хлорофилл, а также почти все другие компоненты фотосистем IиII, локализованы в мембранах тилакоидов в составе особых частиц – квантосом диамтером около 16 нм. На внутренней поверхности мембраны тилакоидов имеются многочисленные регулярно расположенные выступы высотой 10 нм, которые обладают АТФ-синтетазной активностью. На свету в полостях тилакоидов накапливаются протоны, а строма хлоропласта защелачивается. Таким образом, световая фаза фотосинтеза осуществляется в тилакоидах надмолекулярными комплексами наподобие грибовидных телец митохондрий.
Темновая фаза фотосинтеза идет в строме хлоропласта. Она заключается в фиксации углекислого газа и синтезе углеводов с использованием полученных в световой фазе молекул АТФ и восстановленного НАДФ.
Синтез углеводов в строме хлоропласта обеспечивается многоступенчатой ферментативной системой цикла Кальвина, в котором ведущая роль в фиксации углерода принадлежит рибулезодифосфату. В результате химических превращений рибулезодифосфата из шести молекул CO2образуется одна молекула фруктозо-6-фосфата. В дальнейшем фруктозо-6-фосфат дает начало другим сахарам, крахмалу, гликолипидам. Промежуточные продукты цикла Кальвина могут участвовать также в синтезе жирных кислот и аминокислот.