- •Глава 5 Системы управления скоростью электроприводов переменного тока
- •5.1 Особенности и классификация управления электроприводов переменного тока
- •5.2 Суэп переменного тока с тиристорным преобразователем напряжения
- •5.3 Суэп асинхронного электропривода с преобразователями частоты
- •5.4 Суэп с асинхронным двигателем в каскадных схемах.
- •5.5 Система управления асинхронным двигателем с воздействием на добавочное сопротивление в цепи ротора
- •5.6 Системы управления синхронного электропривода
- •Глава 6 Системы управления положением исполнительного органа
- •6.1 Принципы построения систем управления положением
- •6.2 Суп механизма в режиме позиционирования
- •6.3 Позиционная система при отработке средних и больших перемещений
- •6.4 Параболический регулятор положения
- •6.5 Система управления положением механизма в режиме слежения
- •24 Ошибки при обработке управляющего воздействия.
- •Глава 7 Взаимосвязанные системы управления электроприводами
- •7.1 Основные положения по организации взаимосвязанных систем управления электроприводами
- •7.2 Требования к взаимосвязанным электроприводам многодвигательных агрегатов
- •7.3 Классификация, структура и синтез многодвигательных систем управления электроприводами (мэп)
- •7.4 Математическое описание взаимосвязанных электроприводов непрерывно-поточных агрегатов
- •7.5 Системы управления скоростью и соотношением скоростей взаимосвязанных многодвигательных электроприводов
- •7.6 Методы регулирования натяжения посредством измерения усилия, момента и мощности
- •7.7 Задача поддержания натяжения в процессе разгона и торможения
- •7.8 Автоматическая система управления электроприводом с регулированием мощности
- •7.9 Автоматическая система управления электроприводом с регулированием мощности
- •7.10 Система двухзонного управления электроприводом наматывающего устройства
- •Глава 8 Основные положения по организации адаптивных систем управления электроприводом
- •8.1 Классификация адаптивных систем
- •8.2 Самонастраивающиеся системы
- •8.3 Организация движений к экстремуму в поисковых адаптивных системах управления
- •8.4 Регулярные методы поиска экстремума
- •8.5 Метод градиента
- •8.5 Геометрические методы поиска
- •8.6 Методы шагового поиска
- •8.8 Беспоисковые адаптивные системы управления электроприводами
- •8.9 Определение частотных и временных характеристик
- •8.10 Адаптивные наблюдающие устройства идентификации
- •8.15 Система электропривода с регулятором скорости переменной структуры
- •8.16 Электропривод постоянного тока с адаптивным регулятором тока
Глава 8 Основные положения по организации адаптивных систем управления электроприводом
Необходимость в адаптивных системах управления возникает в связи с значительным усложнением решаемых задач управления.
Неадаптивные методы управления, как правило, предусматривают наличие достаточного объема априорных сведений о внутренних и внешних условиях работы объекта еще на предварительной стадии разработки системы. Отсюда видно, что создание адаптивных систем управления осуществляется а принципиально иных условиях? т.е. адаптивные методы должны способствовать достижению высокого качества управления при отсутствии достаточной полноты априорной информации о характеристиках управляемого процесса или в условиях неопределенности.
8.1 Классификация адаптивных систем
Поскольку адаптивные системы широко используют рабочую информацию для анализа динамического состояния системы управления и организации контролируемых изменений свойств, параметров, управляющих воздействий и структуры системы управления, то в зависимости от способов реализации таких контролируемых изменений в процессе нормальной эксплуатации системы можно провести следующую классификацию адаптивных систем: самонастраивающиеся системы, системы с адаптацией в особых фазовых состояниях и обучающиеся системы.

Рисунок 8.1 - Классификация адаптивных систем
Самонастраивающиеся системы (СНС) характеризуются наличием специальных контуров самонастройки, с помощью которых оцениваются динамические и статические свойства системы и формируются такие контролируемые воздействия, что система самопроизвольно приближается к определенному эталону, часто задаваемому математически в виде критерия качества функционирования. В процессе работы системы значение функционала качества изменяется и задача контура самонастройки сводится к обеспечению экстремального (минимального или максимального) значения критерия. Нахождение и поддержание экстремального значения критерия качества управление может производиться или с помощью пробных отклонений системы, или путем аналитического определения условий экстремума. В зависимости от указанных способов нахождения экстремума самонастраивающиеся системы подразделяют на поисковые и беспоисковые.
Системы с адаптацией в особых фазовых состояниях используют особые режимы или свойства нелинейных систем, например режимы автоколебаний, скользящие режимы для организации контролируемых изменений динамических свойств системы управления. Специально организованные особые режимы в таких системах либо служат дополнительным источником р рабочей информации об изменяющихся условиях функционирования системы, либо наделяют систему управления новыми свойствами, за счет которых динамические характеристики управляемого процесса поддерживаются в желаемых пределах независимо от характера возникающих при функционировании изменений. Эти системы можно подразделить на релейные автоколебательные системы и адаптивные системы с переменной структурой.
Обучающиеся системы управления характеризуются наличием специальных процессов обучения, которые заключаются в постепенном закаливании, запоминании и анализе информации о поведении системы и изменении законов функционирования в зависимости от приобретаемого опыта. К процессу обучения приходится прибегать тогда, когда не только мал объем априорных сведений об объекте, но и отсутствует возможность установления детальных причинно-следственных связей в структуре самой системы из-за ее сложности. Накопление и обобщение информации в процессе обучения можно осуществлять за счет внесения "эталонного опыта" в систему из вне, либо путем формирования такого опыта внутри системы. Например, в первом случае обучаемой системе предъявляют последовательность ситуаций, образов или режимов, которые имеют заранее известные характеристики и различаются по принадлежности определенным классам. Поведение системы в ответ на такую обучающую последовательность ситуаций формируют на основе принципа "поощрение - наказание", т.е. правильная реакция системы на предъявленную ситуацию запоминается и используется для организации контролируемых изменений динамических свойств системы управления. В зависимости от способов накопления опыта указанные системы разделяют на обучающиеся с поощрением и обучающиеся без поощрения (самообучающиеся) системы.
