
- •Введение. Цели и задачи. Изучение базы и банков данных
- •Реляционные базы данных
- •Реляционная база данных
- •Функции субд. Типовая организация субд
- •Типовая организация субд
- •Базисные средства манипулирования реляционными данными
- •Реляционная алгебра
- •Общая интерпретация реляционных операций
- •Особенности теоретико-множественных операций реляционной алгебры
- •Реляционное исчисление
- •Целостность сущности и ссылок
- •Субд в архитектуре клиент-сервер
- •Сервера баз данных
- •Типичные распределения функций между клиентами и серверами
- •Оптимизация запросов
- •Стадии процесса оптимизации запросов
- •Язык реляционных баз данных sql
- •Типы данных
- •1) Числовые целые типы данных.
- •2) Нецелочисленные типы данных.
- •3) Денежные типы данных.
- •4) Типы данных для хранения информации о времени.
- •5) Бинарные типы данных.
- •6) Символьные типы данных.
- •7) Текстовые типы данных.
- •8) Специальные типы данных.
- •Управляющие конструкции Transact sql
- •If...Else
- •Логические операторы
- •Создание, модификация и удаление таблиц
- •Определение идентификационной колонки (Identity)
- •Создание таблиц средствами transact sql
- •Изменение структуры таблицы при помощи Transact-sql
- •Управление данными
- •Использование insert
- •Извлечение данных
- •Раздел into предназначен для сохранения результата, выполнения запроса в заданной таблице.
- •Изменение данных
- •Хранимые процедуры
- •Создание хранимых процедур
- •1. Определение типа создаваемой хранимой процедуры.
- •2. Определение входных и выходных параметров хранимой процедуры.
- •3. Разработка кода хранимой процедуры.
- •Управление процессом компиляции хранимой процедуры
- •Управление автоматическим выполнением хранимых процедур
- •Модификация хранимой процедуры
- •Удаление хранимых процедур
- •Использование индексов
- •Создание индексов
- •Использование представлений
- •Создание триггеров
- •Использование курсора
- •Управление правами доступа к объектам базы данных
- •Современные направления исследований и разработок
Сервера баз данных
Термин «сервер БД» используется для обозначения всей СУБД, основанной на архитектуре клиент-сервер, включая серверную и клиентскую часть. Такие системы предназначены для хранения и обеспечения доступа к БД. Обычно одна БД целиком хранится в одном узле сети и поддерживается сервером в сервере БД, представляющим собой простое и дешевое приближение к распределенным БД, так как общая БД доступна для всех пользователей локальной сети. Доступ к базам данных из прикладной программы или пользователя осуществляется с использованием клиентской части системы. В качестве основного интерфейса между клиентскими и серверными частями выступает язык SQL.
Язык SQL представляет собой текущий стандарт интерфейса СУБД в открытых системах. Соблюдая предосторожности при программировании, можно создать прикладные информационные системы мобильные в классе SQL-серверов.
Серверы БД, интерфейс которых основан на языке SQL, обладают своими преимуществами и недостатками.
Преимущества: стандартный открытый интерфейс, т. е. клиентская часть любой ориентированной СУБД может работать с любым SQL-сервером независимо от того, когда компания его разработала.
Недостатки. При высоком уровне интерфейса между клиентской и серверной частями системы со стороны клиента работает слишком мало программ СУБД. Это нормально, если на стороне клиента используется маломощная работающая станция. Но если клиентский компонент обладает достаточной мощностью, то часто возникает необходимость возложить на него большие функции управления БД. Разгрузить сервер, который в этом случае является узким местом этой системы. Одним из корректных направлений СУБД является гибкая конфигурированная система, при которой распределяются функции между клиентской и пользовательской системами.
Преимущества протоколов удаленного вызова процедур
Использование механизма удаленного вызова процедур позволяет перераспределить функции между клиентскими и серверными частями систем, т. к. в тексте программы RPC ничем не отличается от ее обычного вызова. Следовательно, любой компонент системы может располагаться и на стороне сервера, и на стороне клиента.
Механизм RPC, скрывает различия между взаимодействующими компьютерами, физически неоднородная локальная вычислительная сеть приводится к логически однородной сети, взаимодействующих компонентов. В результате использования нет необходимости серьезно заботиться о разовой закупке совместимых серверов и рабочих станций.
Типичные распределения функций между клиентами и серверами
Типичным на сегодняшний день на стороне СУБД работает только такое программное обеспечение, которое не имеет непосредственного доступа к БД, а обращается для этого к серверу с использование языка SQL.
В некоторых случаях необходимо включить в состав клиентской части системы некоторых функций для работы с локальной КЭШ БД, т.е. с той ее частью, которая интенсивно используется клиентской прикладной программой. Используя современные технологии, это можно сделать только путем формального создания на стороне клиента локальной копии серверов БД и рассмотрения всей системы как набор взаимодействующих серверов. С другой стороны иногда хотелось бы перенести большую часть прикладной системы на стороны сервера, если разница в мощностях клиентских рабочих станций и сервера велика, то это можно сделать, используя удаленный вызов процедур при условии, что программное обеспечение сервера это позволяет.
Требования к аппаратуре и программному обеспечению клиентских и сервисных компьютеров различают в зависимости от вида использованной системы.
Если разделение между клиентской и сервисной частью достаточно жесткое, как в большинстве современных СУБД, то пользователям, работающим на станциях, все равно какая аппаратура и операционная система работает на сервере при условии, что он сравнивается с возникающим потоком запросов.
Если могут возникнуть потребности перераспределения функций между клиентом и сервером, то не все равно какие операции системы используются.
Распределенные базы данных
Основной задачей системы управления распределенной БД состоит в обеспечении средств интеграции локальных баз данных, располагающихся в некоторых узлах вычислительной сети для того, чтобы пользователи, работающие на любом узле сети, имели доступ ко всем базам данных как к единой БД. При этом должны обеспечиваться:
1) простота использования системы;
2) возможности автономного функционирования, при нарушении связанности сети;
3) высокая степень эффективности.
Разновидности распределенных систем
Существуют однородные и неоднородные БД. В однородной БД каждая локальная БД управляется одной и той же СУБД. В неоднородной системе локальные БД могут относиться даже к разным моделям данных.
Наиболее успешно в настоящее время решается задача интеграции неоднородных SQL ориентированных систем. Этому способствует стандартизация языка SQL и общее следование.
Основная цель проекта создания распределенной системы управления базами данных может быть сформулирована следующим образом: необходимо обеспечить средства интеграции локальных баз данных, располагающихся в узлах вычислительной сети, с тем, чтобы пользователь, работающий в любом узле сети, имел доступ ко всем этим базам данных, так, как если бы они были централизованными, при этом должны обеспечиваться:
1) легкость использования системы;
2) возможность автономного функционирования при нарушении связности сети;
3) высокая степень эффективности.
Для решения этих проблем был принят ряд необходимых проектных решений, касающихся декомпозиции исходного запроса, оптимального выбора способа выполнения запроса, согласованного выполнения транзакций, обеспечение синхронизации, обнаружение и разрешение распределенных тупиков, восстановление состояния баз данных после разного рода сбоев в узлах сети. Легкость использования системы достигается за счет того, что пользователи остаются в среде языка SQL. Возможность использования SQL обеспечивает прозрачность местоположения данных. Система автоматически обнаруживает текущее местоположение упоминаемых в пользовательском запросе объектов данных. Одна и та же прикладная программа, включающая приложение SQL, может быть выполнена в разных узлах сети. При этом в каждом узле сети на этапе компиляции запроса выбирается наиболее оптимальный план выполнения запросов в соответствии с расположением данных в распределенной системе. Обеспечение автономности узлов сети может быть обеспечено следующим образом: каждая локальная БД администрируется независимо от других, возможно автономное подключение новых пользователей, смена версии автономной части системы и т.д. Система спроектирована таким образом, что в ней не требуются централизованных службы именования объектов или обнаружения тупиков.
В индивидуальных узлах не требуется наличия глобального знания об операциях, выполняющихся в других узлах сети. Работа с доступными базами данных может продолжаться при выходе из строя отдельных узлов сети и линий связи. Для достижения высокой степени эффективности системы используется два основных приема. Во-первых, выполнению запроса предшествует его компиляция. В ходе этого процесса производится поиск употребляемых в запросе имен объектов баз данных в распределенном каталоге и замена имен на внутренние идентификаторы; проверка прав доступа пользователя, от которого производится компиляция, на выполнение соответствующей операции над базами данных и выбор наиболее оптимального глобального плана выполнения запроса, который затем подвергается декомпозиции и про частям рассылается в соответствующие узлы сети, где производится выбор оптимальных локальных планов выполнения компонентов запроса и производится генерация модулей доступа в машинных кодах. В результате на стадии компиляции производится множество действий до реального выполнения запросов. Обработанная таким образом прикладная программа, включающая предложения SQL, может в дальнейшем выполняться много раз без дополнительных накладных расходов.
Во-вторых, средством повышения эффективности системы является возможность перемещения удаленных отношений в локальные базы данных.
Распределенная компиляция запросов
Запросы на языке SQL до своего реального выполнения могут подвергаться компиляции. Компиляция запросов может производиться на стадии предкомпиляции прикладной программы, написанной на обычном традиционном языке программирования с включением предложений SQL, или в процессе выполнения транзакций с использованием инструкции языка SQL. С точки зрения пользователя процесс компиляции приводит к следующим результатам: для каждого предложения на SQL образуется программа в машинных кодах, вызовы которой помещаются в текст исходной прикладной программы, однако в действительности процесс компиляции запроса намного более сложен из-за наличия сложных сетевых взаимодействий, которые требуются при реальном выполнении транзакции. Будем называть главным узлом сети тот узел, в котором инициирован процесс компиляции предложений SQL, и дополнительными узлами (те узлы, которые вовлекаются в этот процесс в ходе его выполнения). На самом грубом уровне процесс компиляции можно разбить на следующие стадии:
В главном узле сети производится грамматический разбор предложения SQL с построением внутреннего представления запроса в виде дерева. На основе информации из локального каталога главного узла и удаленных каталогов дополнительных узлов производится замена имен объектов, фигурирующих в запросе, на их системные идентификаторы.
В главном узле генерируется глобальный план выполнения запроса, в котором учитывается только порядок взаимодействия узлов при реальном выполнении запроса. Глобальный план отображается в преобразованном соответствующим образом дереве запросов.
Если в глобальном плане выполнения запроса участвуют дополнительные узлы, производится его декомпозиция на части, каждую из которых можно выполнить в одном узле. Например, локальная фильтрация отношения в соответствии с заданным условием, при которой соответствующие части запроса рассылаются в соответствующие дополнительные узлы.
В каждом узле, участвующем в глобальном плане выполнения запроса, в главном или дополнительном, выполняется завершающая стадия компиляции. Эта стадия включает по существу две последние фазы процесса компиляции запроса: оптимизацию и генерацию машинных кодов, производится проверка прав пользователя, от имени которого выполняется компиляция, на выполнение соответствующих действий. Происходит обработка представлений БД, осуществляется локальная оптимизация обрабатываемой части запроса в соответствии с имеющимися индексами и производится генерация кода.