Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект лекции_6 Дифференциальные уравнения первого порядка.doc
Скачиваний:
248
Добавлен:
29.02.2016
Размер:
369.15 Кб
Скачать

Учреждение образования «Белорусская государственная

сельскохозяйственная академия»

Кафедра высшей математики

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА

Конспект лекции для студентов бухгалтерского факультета

заочной формы получения образования (НИСПО)

Горки, 2013

Дифференциальные уравнения первого порядка

  1. Понятие дифференциального уравнения. Общее и частное решения

При изучении различных явлений часто не удаётся найти закон, который непосредственно связывает независимую переменную и искомую функцию, но можно установить связь между искомой функцией и её производными.

Соотношение, связывающее независимую переменную, искомую функцию и её производные, называется дифференциальным уравнением:

. (1)

Здесь x – независимая переменная, y – искомая функция, - производные искомой функции. При этом в соотношении (1) обязательно наличие хотя бы одной производной.

Порядком дифференциального уравнения называется порядок старшей производной, входящей в уравнение.

Рассмотрим дифференциальное уравнение

. (2)

Так в это уравнение входит производная только первого порядка, то оно называется дифференциальным уравнением первого порядка.

Если уравнение (2) можно разрешить относительно производной и записать в виде

, (3)

то такое уравнение называется дифференциальным уравнением первого порядка в нормальной форме.

Во многих случаях целесообразно рассматривать уравнение вида

, (4)

которое называется дифференциальным уравнением первого порядка, записанным в дифференциальной форме.

Так как , то уравнение (3) можно записать в виде или , где можно считать и . Это означает, что уравнение (3) преобразовано в уравнение (4).

Запишем уравнение (4) в виде . Тогда , , , где можно считать , т.е. получено уравнение вида (3). Таким образом, уравнения (3) и (4) равносильны.

Решением дифференциального уравнения (2) или (3) называется любая функция , которая при подстановке её в уравнение (2) или (3) обращает его в тождество:

или .

Процесс нахождения всех решений дифференциального уравнения называется его интегрированием, а график решения дифференциального уравнения называется интегральной кривой этого уравнения.

Если решение дифференциального уравнения получено в неявном виде , то оно называется интегралом данного дифференциального уравнения.

Общим решением дифференциального уравнения первого порядка называется семейство функций вида , зависящее от произвольной постоянной С, каждая из которых является решением данного дифференциального уравнения при любом допустимом значении произвольной постоянной С. Таким образом, дифференциальное уравнение имеет бесчисленное множество решений.

Частным решением дифференциального уравнения называется решение, получаемое из формулы общего решения при конкретном значении произвольной постоянной С, включая .

  1. Задача Коши и её геометрическая интерпретация

Уравнение (2) имеет бесчисленное множество решений. Чтобы из этого множества выделить одно решение, которое называется частным, нужно задать некоторые дополнительные условия.

Задача отыскания частного решения уравнения (2) при заданных условиях называется задачей Коши. Эта задача является одной из важнейших в теории дифференциальных уравнений.

Формулируется задача Коши следующим образом: среди всех решений уравнения (2) найти такое решение , в котором функция принимает заданное числовое значение , если независимая переменная x принимает заданное числовое значение , т.е.

, , (5)

где D – область определения функции .

Значение называется начальным значением функции, а начальным значением независимой переменной. Условие (5) называется начальным условием или условием Коши.

С геометрической точки зрения задачу Коши для дифференциального уравнения (2) можно сформулировать следующим образом: из множества интегральных кривых уравнения (2) выделить ту, которая проходит через заданную точку .