
- •1.Роль физиологии в диалектико-материалистическом понимании сущности жизни. Связь физиологии с другими науками.
- •2.Основные этапы развития физиологии. Особенности современного периода развития физиологии.
- •3.Аналитический и системный подходы к изучению функций организма. Роль и.М. Сеченова и и.П. Павлова в создании материалистических основ физиологии.
- •4.Основные формы регуляции физиологических функций (механическая, гуморальная, нервная).
- •7.Современные представления о процессе возбуждения. Местное и распространяющееся возбуждение. Потенциал действия и его фазы. Соотношение фаз возбудимости с фазами потенциала действия.
- •8.Законы раздражения возбудимых тканей. Действие постоянного тока на возбудимые ткани.
- •9.Физиологические свойства скелетной мышцы. Сила и работа мышц.
- •11.Современная теория мышечного сокращения и расслабления.
- •12.Функциональная характеристика неисчерченных (гладких) мышц.
- •13.Распространение возбуждения по безмиелиновым и миелиновым нервным волокнам. Характеристика их возбудимости и лабильности. Лабильность, парабиоз и его фазы (н.Е. Введенский).
- •14.Механизм появления возбуждения в рецепторах. Рецепторный и генераторный потенциалы.
- •15.Строение, классификация и функциональные свойства синапсов. Особенности передачи возбуждения в синапсах цнс. Возбуждающие синапсы и их медиаторные механизмы, впсп.
- •16.Функциональные св-ва железистых клеток.
- •17.Рефлекторный принцип регуляции (р. Декарт, г. Прохаска), его развитие в трудах и.М. Сеченова, и.П. Павлова, п.К. Анохина.
- •18.Основные принципы и особенности распространения возбуждения в цнс. Общие принципы координационной деятельности цнс.
- •19.Торможение в цнс (и.М. Сеченов), его виды и роль. Современное представление о механизмах центрального торможения. Тормозные синапсы и их медиаторы. Ионные механизмы тпсп.
- •21.Роль см в процессах регуляции деятельности ода и вегетативных функций организма. Характеристика спинальных животных. Принципы работы спинного мозга. Клинически важные спинальные рефлексы.
- •22.Продолговатый мозг и мост, их участие в процессах саморегуляции функций.
- •23.Физиология среднего мозга, его рефлекторная деятельность и участие в процессах саморегуляции функций.
- •24.Децеребрационная ригидность и механизм ее возникновения. Роль среднего и продолговатого мозга в регуляции мышечного тонуса.
- •25.Статические и статокинетические рефлексы (р. Магнус). Саморегуляторные механизмы поддержания равновесия тела.
- •26.Физиология мозжечка, его влияние на моторные и вегетативные функции организма.
- •27.Ретикулярная формация ствола мозга. Нисходящие и восходящие влияния ретикулярной формации ствола мозга. Участие ретикулярной формации в формировании целостной деятельности организма.
- •28. Таламус. Функциональная характеристика и особенности ядерных групп таламуса.
- •29.Гипоталамус. Характеристика основных ядерных групп. Участие гипоталамуса в регуляции вегетативных функций и в формировании эмоций и мотиваций.
- •30.Лимбическая система мозга. Ее роль в формировании биологических мотиваций и эмоций.
- •31.Роль базальных ядер в формировании мышечного тонуса и сложных двигательных актов.
- •32.Современное представление о локализации функций в коре больших полушарий. Динамическая локализация функций.
- •35.Гормоны гипофиза, его функциональные связи с гипоталамусом и участие в регуляции деятельности эндокринных органов.
- •36.Гормоны щитовидной и околощитовидной желез и их биологическая роль.
- •37.Эндокринная функция поджелудочной железы и ее роль в регуляции обмена веществ.
- •38. Физиология надпочечников. Роль гормонов коры и мозгового вещества надпочечников в регуляции функций организма.
- •39. Половые железы. Мужские и женские половые гормоны, их физиологическая роль в формировании пола и регуляции процессов размножения. Эндокринная функция плаценты.
- •40. Факторы, формирующие половое поведение. Роль биологических и социальных факторов в формировании полового поведения.
- •41. Физиология эпифиза. Физиология вилочковой железы.
- •42. Понятие о системе крови. Свойства и функции крови. Основные физиологические константы крови и механизмы их поддержания.
- •43. Электролитный состав плазмы крови. Осмотическое давление плазмы крови. Функциональная система, обеспечивающая постоянство осмотического давления крови.
- •44. Функциональная система, поддерживающая постоянство кщр крови
- •45. Белки плазмы крови, их характеристика и функциональное значение. Онкотическое давление крови и его роль.
- •46. Характеристика форменных элементов крови (эритроциты, лейкоциты, тромбоциты) и их роль в организме.
- •47. Виды гемоглобина и его соединения, их физиологическое значение.
- •48. Гуморальная и нервная регуляция эритро- и лейкопоэза.
- •49. Понятие о гемостазе. Процесс свертывания крови, его фазы. Факторы, ускоряющие и замедляющие свертывание крови.
- •50. Свертывающая и противосвертывающая системы крови, как главные компоненты функциональной системы поддержания жидкого состояния крови.
- •51. Группы крови. Резус-фактор. Правила переливания крови.
- •53.Давление в плевральной полости, его происхождение и роль в механизме внешнего дыхания и изменение в разные фазы дыхательного цикла.
- •64. Пищевая мотивация. Физиологические основы голода и насыщения.
- •65.Пищеварение, его значение. Функции пищеварительного тракта. Типы пищеварения в зависимости от происхождения и локализации гидролиза.
- •66. Принципы регуляции деятельности пищеварительной системы. Роль рефлекторных, гуморальных и местных механизмов регуляции. Гормоны жкт, их классификация.
- •67. Пищеварение в полости рта: состав и физиологическая роль слюны. Слюноотделение и его регуляция.
- •68. Саморегуляция жевательного акта. Глотание, его фазы, саморегуляция этого акта. Функциональные особенности пищевода.
- •70. Виды сокращения желудка. Нейрогуморальная регуляция движений желудка.
- •71. Внешнесекреторная деятельность поджелудочной железы. Состав и свойства сока поджелудочной железы. Приспособительный характер панкреатической секреции к видам пищи и пищевым рационам.
- •72. Роль печени в пищеварении. Регуляция образования желчи, выделение ее в двенадцатиперстную кишку.
- •73. Состав и свойства кишечного сока. Регуляция секреции кишечного сока.
- •74. Полостной и мембранный гидролиз пищевых веществ в различных отделах тонкой кишки. Моторная деятельность тонкой кишки и ее регуляция.
- •75. Особенности пищеварения в толстой кишке.
- •76. Всасывание веществ в различных отделах пищеварительного тракта. Виды и механизмы всасывания веществ через биологические мембраны.
- •77. Понятие об обмене веществ в организме. Процессы ассимиляции и диссимиляции веществ. Пластическая и энергетическая роль питательных веществ.
- •78. Обмен и специфический синтез в организме жиров, углеводов, белков. Саморегуляторный механизм обмена питательных веществ.
- •79. Значение минеральных веществ, микроэлементов и витаминов в организме. Саморегуляторный характер обеспечения водного и минерального баланса.
- •80. Основной обмен. Факторы, влияющие на величину основного обмена. Значение определения величины основного обмена для клиники.
- •81. Энергетический баланс организма. Рабочий обмен. Энергетические затраты организма при разных видах труда.
- •82. Физиологические нормы питания в зависимости от возраста, вида труда и состояния организма. Особенности питания в условиях Севера.
- •84. Температура тела человек и ее суточные колебания. Температура различных участков кожных покровов и внутренних органов. Теплоотдача. Способы отдачи тепла и их регуляция.
- •85. Теплопродукция. Обмен веществ как источник образования тепла. Роль отдельных органов в теплопродукции, регуляция этого процесса.
- •87. Почка. Образование первичной мочи. Ее количество и состав. Закономерности фильтрации.
- •88.Образование конечной мочи. Характеристика процесса реабсорбции различных веществ в канальцах и петле нефрона. Процессы секреции и экскреции в почечных канальцах.
- •89. Регуляция деятельности почек. Роль нервных и гуморальных факторов.
- •90. Состав, свойства, объем конечной мочи. Процесс мочеиспускания, его регуляция.
- •91. Выделительная функция кожи, легких и жкт.
- •92. Значение кровообращения для организма. Кровообращение как компонент различных функциональных систем, определяющих гемостаз.
- •96. Гетерометрическая и гомометрическая регуляция деятельности сердца. Закон сердца (Старлинг э.Х.) и современные дополнения к нему.
- •97. Гормональная регуляция деятельности сердца.
- •98. Характеристика влияний парасимпатических и симпатических нервных волокон и их медиаторов на деятельность сердца. Рефлексогенные поля и их значение в регуляции деятельности сердца.
- •99. Основные законы гемодинамики и использование их для объяснения движения крови по сосудам. Функциональная структура различных отделов сосудистого русла.
- •101. Линейная и объемная скорость движения крови в различных участках кровеносного русла и факторы, их обуславливающие.
- •102. Артериальный и венный пульс, их происхождение. Анализ сфигмограммы и флебограммы.
- •104. Лимфатическая система. Лимфообразование, его механизмы. Функции лимфы и особенности регуляции лимфообразования и лимфооттока.
- •2)Внутриорганных сплетений посткапилляров и мелких, снабженных клапанами, лимфатических сосудов;
- •3)Экстраорганных отводящих лимфатических сосудов, впадающих в главные лимфатические стволы, прерывающихся на своем пути лимфатическими узлами;
- •4)Главных лимфатических протоков — грудного и правого лимфатического, впадающих в крупные вены шеи.
- •105. Функциональные особенности структуры, функции и регуляции сосудов легких, сердца и других органов.
- •106. Рефлекторная регуляция тонуса сосудов. Сосудодвигательный центр, его эфферентные влияния. Афферентные влияния на сосудодвигательный центр. Гуморальные влияния на сосудистый центр.
- •107. Учение и.П. Павлова об анализаторах. Рецепторный отдел анализаторов. Классификация, функциональные свойства и особенности рецепторов. Функциональная лабильность (п.Г. Синякин).
- •109. Характеристика зрительного анализатора. Рецепторный аппарат. Фотохимические процессы в сетчатке при действии света.
- •110. Восприятие цвета (м.В. Ломоносов, г. Гельмгольц, и.П. Лазарев). Основные формы нарушения цветового зрения. Современное представление о восприятии цвета.
- •111. Физиологические механизмы аккомодации глаза. Адаптация зрительного анализатора, ее механизмы. Роль эфферентных влияний.
- •112. Проводниковый и корковый отделы зрительного анализатора. Формирование зрительного образа. Роль правого и левого полушарий в зрительном восприятии.
- •114. Особенности проводникового и коркового отделов слухового анализатора. Теории восприятия звука (г. Гельмгольц, г. Бекеши).
- •116. Двигательный анализатор, его роль в восприятии и оценке положения тела в пространстве и формировании движений.
- •117. Тактильный анализатор. Классификация тактильных рецепторов, особенности их строения и функции.
- •119. Физиологическая характеристика обонятельного анализатора. Классификация запахов, механизм их восприятия.
- •120. Физиологическая характеристика вкусового анализатора. Механизм генерирования рецепторного потенциала при действии вкусовых раздражителей разной модальности.
- •121. Роль интероцептивного анализатора в поддержании постоянства внутренней среды организма, его структура. Классификация интерорецепторов, особенности их функционирования.
- •122. Врожденные формы поведения (безусловные рефлексы и инстинкты), их классификация и значение для приспособительной деятельности.
- •124. Явление торможения в высшей нервной деятельности. Виды торможения. Современное представление о механизмах торможения.
- •125. Аналитико-синтетическая деятельность коры больших полушарий. Динамический стереотип, его физиологическая сущность, значение для обучения и приобретения трудовых навыков.
- •126. Архитектура целостного поведенческого акта с точки зрения теории функциональной системы п.К. Анохина.
- •128. Учение п.К. Анохина о функциональных системах и саморегуляции функций. Узловые механизмы функциональной системы.
- •129. Мотивации. Классификация мотиваций, механизмы их возникновения. Потребности.
- •130. Память. Механизмы памяти. Теории памяти.
- •131. Учение и.П. Павлова о типах высшей нервной деятельности, их классификация и характеристика. Учение и.П. Павлова о I и II сигнальных системах.
- •132. Физиологические механизмы сна. Фазы сна. Теории сна.
- •133. Особенности восприятия у человека. Внимание. Значение работ и.П. Павлова и а.А. Ухтомского для понимания физиологических механизмов внимания. Физиологические корреляты внимания.
- •134. Биологическая роль эмоций. Виды эмоциональных состояний. Теории эмоций. Вегетативные и соматические компоненты эмоций. Роль эмоций в целенаправленной деятельности человека.
- •135. Учение г. Селье о стрессе. Стадии стресса. Эмоциональное напряжение (эмоциональный стресс) и его роль в формировании психосоматических заболеваний организма.
- •136. Речь, функции речи. Функциональная асимметрия коры больших полушарий, связанная с развитием речи у человека.
- •137. Мышление. Сознание. Физиологические подходы к изучению процесса мышления.
- •138. Биологическое значение боли. Современное представление о ноцицепции и центральные механизмы боли. Антиноцицептивная система. Нейрохимические механизмы антиноцицепции.
99. Основные законы гемодинамики и использование их для объяснения движения крови по сосудам. Функциональная структура различных отделов сосудистого русла.
Гемодинамика — раздел физиологии кровообращения, использующий законы гидродинамики (физические явления движения жидкости в замкнутых сосудах) для исследования причин, условий и механизмов движения крови в ССС. Гемодинамика определяется двумя силами: давлением, которое оказывает влияние на жидкость, и сопротивлением, которое она испытывает при трении о стенки сосудов и вихревых движениях.
Силой, создающей давление в сосудистой системе, является сердце. У человека среднего возраста при каждом сокращении сердца в сосудистую систему выталкивается 60−70 мл крови (систолический объем) или 4−5 л/мин (минутный объем). Движущей силой крови служат разность давлений, возникающая в начале и конце трубки.
Почти во всех отделах сосудистой системы кровоток носит ламинарный характер — кровь движется отдельными слоями параллельно оси сосуда. При этом слой, прилежащий к стенке сосуда, остается практически неподвижным, по этому слою скользит второй, а по нему, в свою очередь, третий и т.д. Форменные элементы крови составляют центральный, осевой поток, плазма движется ближе к стенке сосуда. Следовательно, чем меньше диаметр сосуда, тем ближе располагаются центральные слои к стенке и больше тормозится скорость их движения из-за вязкого взаимодействия со стенкой. В целом это означает, что в мелких сосудах скорость кровотока ниже, чем в крупных. В правильности этого положения легко убедиться сопоставив скорости кровотока в разных участках сосудистого русла. В аорте она составляет 40 см/с, в артериях — от 40 до 10, артериолах — 10 — 0,1, капиллярах — меньше 0,1, венулах — меньше 0,3, венах — 0,3 — 5,0, полой вене — 5 — 20 см/с (К. Шмидт-Ниельсон, 1982).
Наряду с ламинарным в сосудистой системе существует турбулентное движение с характерным завихрением крови. Ее частицы перемещаются не только параллельно оси сосуда, как при ламинарном кровотоке, но и перпендикулярно ей. Результатом такого сложного перемещения является значительное увеличение внутреннего трения жидкости. В этом случае объемная скорость тока крови будет уже не пропорциональной градиенту давления, а примерно равной квадратному корню из него. Турбулентное движение обычно возникает в местах разветвлений и сужений артерий, в участках крутых изгибов сосудов.
Кровь представляет собой взвесь форменных элементов в коллоидно-солевом растворе, она обладает определенной вязкостью, не являющейся величиной постоянной. При протекании крови через капилляр, диаметр которого меньше 1 мм, вязкость уменьшается. Последующее уменьшение диаметра капилляра еще более уменьшает вязкость протекающей крови. Этот гемодинамический парадокс объясняется тем, что во время движения крови эритроциты сосредоточиваются в центре потока. Пристеночный же слой состоит из чистой плазмы с гораздо меньшей вязкостью, по которому легко скользят форменные элементы. В итоге улучшаются условия тока крови и происходит снижение перепадов давления, что, в общем, компенсирует увеличение вязкости крови и снижение скорости ее тока в мелких артериях. Переход от ламинарного движения крови к турбулентному сопровождается значительным ростом сопротивления течению крови.
Соотношение между характером течения жидкости в жестких трубках и давлением обычно определяют по формуле Пуазейля. Используя эту формулу, можно вычислить сопротивление R току крови в зависимости от ее вязкости η, длины l и радиуса r сосуда:
Сосудистую систему в целом можно представить в виде последовательно и параллельно соединённых трубок разной длины и диаметра. В случае последовательного соединения общее сопротивление составляет сумму сопротивлений отдельных сосудов: R = R1 + R2 + ... + Rn. При параллельном соединении величину сопротивления вычисляют по другой формуле: 1/R = l/R1 + 1/R2 + l/Rn. Учитывая сложность геометрии сосудов целого организма, ее непостоянство, зависящее от открытия и закрытия шунтов, коллатералей, степени сокращения гладких мышц, эластичности стенок, изменения вязкости крови и других причин, в реальных условиях рассчитать величину сосудистого сопротивления трудно. Поэтому его принято определять как частное от деления кровяного давления Р на минутный объем крови Q:
Для всей сосудистой системы организма в целом эта формула применима лишь при том условии, если в конце системы, т.е. в полых венах вблизи места их впадения в сердце, давление будет близким к нулю. Соответственно при необходимости вычисления сопротивления отдельного участка сосудистой системы формула приобретает вид
Значения Р1 и P2 отражают давление в начале и конце определяемого участка.
Основная кинетическая энергия, необходимая для движения крови, сообщается ей сердцем во время систолы. Одна часть этой энергии расходуется на проталкивание крови, другая — превращается в потенциальную энергию растягиваемой во время систолы эластичной стенки аорты, крупных и средних артерий. Их свойства зависят от наличия эластических и коллагеновых волокон, растяжимость которых примерно в шесть раз выше, чем, например, резиновых нитей той же толщины. Во время диастолы энергия стенки аорты и сосудов переходит в кинетическую энергию движения крови.
Кроме эластичности и растяжимости, т.е. пассивных свойств, сосуды обладают еще способностью активно реагировать на изменение в них кровяного давления. При повышении давления гладкие мышцы стенок сокращаются и диаметр сосуда уменьшается. Таким образом, пульсирующий ток крови, создаваемый функцией сердца, благодаря особенностям аорты и крупных сосудов выравнивается и становится относительно непрерывным.
Основными показателями гемодинамики являются объемная скорость, скорость кругооборота крови, давление в разных областях сосудистой системы.
Объемная скорость движения крови характеризует ее количество (в миллиметрах), протекающее через поперечное сечение сосуда за единицу времени (1 мин). Объемная скорость кровотока прямо пропорциональна перепаду давления в начале и конце сосуда и обратно пропорциональна его сопротивлению току крови. В нормальном организме отток крови от сердца соответствует ее притоку к нему. Это означает, что объем крови, протекающей за единицу времени через всю артериальную и всю венозную систему большого и малого круга кровообращения, одинаков.
Линейная скорость движения крови характеризует скорость перемещения ее частиц вдоль сосуда при ламинарном потоке. Она выражается в сантиметрах в секунду и определяется как отношение объемной скорости кровотока Q к площади поперечного сечения сосуда πr2:
Полученная таким образом величина является сугубо средним показателем, так как, согласно законам ламинарного движения, скорость перемещения крови в центре сосуда является максимальной и падает в слоях, прилежащих к сосудистой стенке.
Линейная скорость кровотока различна и в отдельных участках сосудистого русла по ходу сосудистого дерева. Она зависит от общей суммы площади просветов сосудов этого калибра в рассматриваемом участке. Наименьшим поперечным сечением характеризуется аорта, в связи с чем и скорость движения крови в ней самая большая — 50−70 см/с. Наибольшей суммарной площадью поперечного сечения обладают капилляры, у млекопитающих она приблизительно в 800 раз больше площади поперечного сечения аорты. Соответственно и скорость крови здесь около 0,05 см/с. В артериях она составляет 20−40 см/с, в артериолах — 0,5 см/с. В силу того, что при слиянии вен их суммарный просвет уменьшается, линейная скорость кровотока снова возрастает, достигая в полой вене 20 см/с.
Кровь выталкивается отдельными порциями, поэтому кровоток в аорте и артериях пульсирует. При этом его линейная скорость возрастает в фазе систолы и снижается во время диастолы. В капиллярной сети в силу особенностей строения предшествующих ей артерий пульсовые толчки исчезают и линейная скорость кровотока приобретает постоянный характер.
Скорость кругооборота крови отражает время, за которое частица крови проходит большой и малый круг кровообращения. Для определения скорости кругооборота обычно используют введение "метки" с последующим контролем ее появления в соответствующей области. У различных насекомых время кругооборота равно 20−30 мин, у крабов — 37−65 с, у кролика — 7 с, у собаки — 16 с. У человека полное время кругооборота составляет 23 с. При этом на прохождение малого круга кровообращения приходится около1/5 времени, а на прохождение большого — нередко4/5.
100. Факторы, обеспечивающие движение крови по сосудам. Кровяное давление. Факторы, обуславливающие величину артериального и венозного кровяного давления. Кровяное давление как одна из физиологических констант организма. Функциональная система, поддерживающая кровяное давление.
Факторы, обеспечивающие движение крови
Все сосуды малого и большого круга, в зависимости от строения и функциональной роли делят на следующие группы:
Сосуды эластического типа
Сосуды мышечного типа
Сосуды резистивного типа
Сосуды обменного типа
Сосуды емкостного типа
К сосудам эластического типа относятся аорта, легочная артерия и другие крупные артерии. В их стенке содержится много эластических волокон, поэтому она обладает большой упругостью и растяжимостью.
Сосудами мышечного типа являются артерии среднего и малого калибра. В их стенке больше гладкомышечных волокон. Однако мышечный слой мало влияет на просвет этих сосудов, а следовательно гемодинамику.
К резистивным сосудам относят концевые артерии и артериолы. Эти прекапиллярные сосуды имеют небольшой диаметр и толстую гладкомышечную стенку. Поэтому они оказывают наибольшее сопротивление току крови и влияние на системную гемодинамику. Сокращения их гладких мышц обеспечивают регуляцию кровотока в органах и тканях, а следовательно перераспределение крови.
Обменными сосудами являются капилляры. В них происходит диффузия и фильтрация воды, газов, минеральных и питательных веществ.
К емкостным сосудам относятся вены. Их стенка легко растягивается. Поэтому они способны накапливать большое количество крови, без изменения венозного кровотока. В связи с этим вены некоторых органов могут выполнять роль депо крови. Это вены печени, подкожных сосудистых сплетений, чревные вены. В венах может депонироваться до 70% всей крови. Истинных депо, как селезенка собаки, у человека нет.
Кроме этих типов имеются шунтирующие сосуды. Ими являются артериовенозные анастомозы. При некоторых условиях они обеспечивают переход крови в вены минуя капилляры.
Движение крови по артериям обусловлено следующими факторами:
1. Работой сердца, обеспечивающего восполнение энергозатрат системы кровообращения.
2. Упругостью стенок эластических сосудов. В период систолы энергия систолической порции крови переходит в энергию деформации сосудистой стенки. Во время диастолы стенка сокращается и ее потенциальная энергия переходит в кинетическую. Это способствует поддержанию снижающегося артериального давления и сглаживанию пульсаций артериального кровотока.
3. Разность давлений в начале и конце сосудистого русла. Она возникает в результате затраты энергии на преодоление сопротивления току крови. Сопротивление кровотоку в сосудах зависит от вязкости крови, длины и, в основном, от диаметра сосудов. Чем он меньше, тем больше сопротивление, а следовательно разность давления в начале и конце сосуда. В сосудистой системе сопротивление изменяется неравномерно. Поэтому неравномерно снижается и кровяное давление. В артериях оно уменьшается на 10%, артериолах и капиллярах на 85%, венах на 5 %. Таким образом, наибольший вклад в общее периферическое сопротивление (ОПС) вносят сосуды резистивного и обменного типа.
При физической работе артериолы и капилляры расширяются поэтому ОПС уменьшается.
Стенки вен более тонкие и растяжимые, чем у артерий. Энергия сердечных сокращений в основном уже затрачена на преодоление сопротивления артериального русла. Поэтому давление в венах невысокое и требуются дополнительные механизмы, способствующих венозному возврату к сердцу.Венозный кровоток обеспечивают следующие факторы:
1. Разность давлений в начале и конце венозного русла.
2. Сокращения скелетных мышц при движении, в результате которых кровь выталкивается из периферических вен к правому предсердию.
3. Присасывающее действие грудной клетки. На вдохе давление в ней становится отрицательным, что способствует венозному кровотоку.
4. Присасывающее действие правого предсердия в период его диастолы. Расширение его полости приводит к появлению отрицательного давления в нем.
5. Сокращения гладких мышц вен.
Движение крови по венам к сердцу связано и с тем, что в них имеются выпячивания стенок, которые выполняют роль клапанов.
Кровяное давление
В результате сокращений желудочков сердца и выброса из них крови, а также наличия сопротивления току крови в сосудистом русле создается кровяное давление. Это сила, с которой кровь давит на стенку сосудов. Величина давления в аорте и артериях зависит от фазы сердечного цикла. Во время систолы оно максимально и называется систолическим. В период диастолы минимально и носит название диастолического. Систолическое давление у здорового человека молодого и среднего возраста в крупных артериях составляет 100 – 130 мм.рт.ст. Диастолическое 60-80 мм.рт.ст. Разность между систолическим и диастолическим давлением называется пульсовым давлением. В норме его величина 30-40 мм.рт.ст. Кроме этого определяют среднее давление. Это такое постоянное, т.е. не пульсирующее давление, гемодинамический эффект которого соответствует определенному пульсирующему. Величина среднего давления ближе к диастолическому, так как продолжительность диастолы больше, чем систолы.
Артериальное давление (АД) можно измерить прямыми и непрямыми методами. Для измерения прямым методом в артерию вводят иглу или канюлю, соединенные с манометром. Сейчас вводят катеттер с датчиком давления. Сигнал от датчика поступает на электрический манометр. В клинике прямое измерение производят только во время операций.
Наиболее широко используются непрямые методы Рива-Роччи и Короткова. В 1896 г. Рива-Роччи предложил измерять систолическое давление по величине давления, которое необходимо создать в резиновой манжете для полного пережатия артерии. Это давление измеряется манометром. Прекращение кровотока определяется по исчезновению пульса. В 1905 г. Коротков предложил метод измерения и систолического и диастолического давления. Он заключается в следующем. В манжете создается давление, при котором ток крови в плечевой артерии полностью прекращается. Затем оно постепенно снижается и одновременно фонендоскопом в локтевой ямке выслушиваются возникающие звуки. В тот момент, когда давление в манжете становится немного ниже, чем систолическое, появляются короткие ритмические звуки. Их называют тонами Короткова. Они обусловлены прохождением порций крови в деформированном манжетой сосуде в период систолы. Ток крови носит турбулентный характер, поэтому возникают звуки. По мере снижения давления в манжете интенсивность тонов уменьшается и при его определенной величине они исчезают. Ток крови приобретает ламинарный характер. В этот момент давление в манжете примерно соответствует диастолическому. В настоящий момент для измерения артериального давления используют аппараты, регистрирующие колебания сосуда под манжетой. Микропроцессор рассчитывает систолическое и диастолическое давление. Для длительной регистрации АД применяется артериальная осциллография. Это графическая регистрация пульсаций крупных артерий при их сжатии манжетой. Этот метод позволяет определять систолическое, диастолическое, среднее давление и эластичность стенки сосуда. Артериальное давление возрастает при физической и умственной работе, эмоциональных реакциях. При физической работе в основном увеличивается систолическое давление, т.к. возрастает систолический объем. Если происходит сужение сосудов, то повышается и систолическое и диастолическое давление. Такое явление наблюдается при сильных эмоциях.
При длительной графической регистрации артериального давления обнаруживается три типа его колебаний. Их называют волнами I-го, II-го и III-го порядков. Волны первого порядка это колебания давления в период систолы и диастолы. Волны второго порядка называются дыхательными. На вдохе артериальное давление возрастает, а на выдохе снижается. При гипоксии мозга возникают еще более медленные волны третьего порядка. Они обусловлены колебаниями активности сосудодвигательного центра продолговатого мозга.
В артериолах, капиллярах, мелких и средних венах давление постоянно. В артериолах его величина 40-60 мм.рт.ст., в артериальном конце капилляров 20-30 мм.рт.ст., венозном 8-12 мм.рт.ст. Кровяное давление в артериолах и капиллярах измеряется путем введения в них микропипетки, соединенной с манометром. Кровяное давление в венах равно 5-8 мм.рт.ст. В полых венах оно равно 0, а на вдохе на 3-5 мм.рт.ст. ниже атмосферного. Давление в венах измеряется прямым методом. Он называется флеботонометрией.
Повышение кровяного давления называется гипертонией, или гипертензией, понижение – гипотонией, гипотензией. Артериальная гипертония наблюдается при старении, гипертонической болезни, заболеваниях почек и т.д. Гипотония наблюдается при шоке, истощении, а также нарушении функций сосудодвигательного центра.
Функциональная система, поддерживающая на постоянном уровне величину кровяного давления, – временная совокупность органов и тканей, формирующаяся при отклонении показателей с целью вернуть их к норме. Функциональная система состоит из четырех звеньев:
полезного приспособительного результата;
центрального звена;
исполнительного звена;
обратной связи.
Полезный приспособительный результат – нормальная величина кровяного давления, при изменении которого повышается импульсация от механорецепторов в ЦНС, в результате возникает возбуждение.
Центральное звено представлено сосудодвигательным центром. При возбуждении его нейронов импульсы конвергируют и сходят на одной группе нейронов – акцепторе результата действия. В этих клетках возникает эталон конечного результата, затем вырабатывается программа для его достижения.
Исполнительное звено включает внутренние органы:
сердце;
сосуды;
выделительные органы;
органы кроветворения и кроверазрушения;
депонирующие органы;
дыхательную систему (при изменении отрицательного внутриплеврального давления изменяется венозный возврат крови к сердцу);
железы внутренней секреции, которые выделяют адреналин, вазопрессин, ренин, альдостерон;
скелетные мышцы, изменяющие двигательную активность.
В результате деятельности исполнительного звена происходит восстановление величины кровяного давления. От механорецепторов ССС исходит вторичный поток импульсов, несущих информацию об изменении величины кровяного давления в центральное звено. Эти импульсы поступают к нейронам акцептора результата действия, где происходит сопоставление полученного результата с эталоном.
Таким образом, при достижении нужного результата функциональная система распадается.
В настоящее время известно, что центральный и исполнительный механизмы функциональной системы включаются не одновременно, поэтому по времени включения выделяют:
кратковременный механизм;
промежуточный механизм;
длительный механизм.
Механизмы кратковременного действия включаются быстро, но продолжительность их действия несколько минут, максимум 1 ч. К ним относятся рефлекторные изменение работы сердца и тонуса кровеносных сосудов, т. е. первым включается нервный механизм.
Промежуточный механизм начинает действовать постепенно в течение нескольких часов. Этот механизм включает:
изменение транскапиллярного обмена;
понижение фильтрационного давления;
стимуляцию процесса реабсорбции;
релаксацию напряженных мышц сосудов после повышения их тонуса.
Механизмы длительного действия вызывают более значительные изменения функций различных органов и систем (например, изменение работы почек за счет изменения объема выделяющейся мочи). В результате происходит восстановление кровяного давления. Гормон альдостерон задерживает Na, который способствует реабсорбции воды и повышению чувствительности гладких мышц к сосудосуживающим факторам, в первую очередь к системе «ренин – ангиотензин».
Таким образом, при отклонении от нормы величины кровяного давления различные органы и ткани объединяются с целью восстановления показателей. При этом формируется три ряда заграждений:
уменьшение сосудистой регуляции и работы сердца;
уменьшение объема циркулирующей крови;
изменение уровня белка и форменных элементов.