Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
69
Добавлен:
04.01.2014
Размер:
3.53 Mб
Скачать

Теплопроводность газов

Рассмотрим газ, в котором каким-то способом поддерживается непостоянство температуры вдоль направления, которое мы обозначим буквой x. Представим мысленно площадку площадью S, перпендикулярную к этому направлению. В этом случае через площадку S возникает поток тепла, величина которого определяется формулой:

,

где - градиент температуры, т.е. величина, показывающая, как быстро изменяется температура в направлении оси х, (каппа) – коэффициент пропорциональности, зависящий от свойств среды и называемый коэффициентом теплопроводности. Знак минус в формуле отражает то обстоятельство, что тепло течёт в направлении убывания температуры. Эта формула называется уравнением теплопроводности или законом Фурье.

Вычислим поток тепла в газе, основываясь на молекулярно-кинетических представлениях. Если температура газа в разных точках различна, то и средняя энергия молекул в этих точках также будет различной. Перемещаясь вследствие теплового движения из одних мест в другие, молекулы переносят запасённую ими энергию. Этот перенос энергии и обуславливает процесс теплопроводности в газах.

Исходя из упрощённых представлений, будем считать, что количество молекул, пролетающих через площадку S за секунду, равно

.

Каждая молекула несёт с собой энергию, соответствующую температуре в том месте, где произошло последнее соударение её с другой молекулой. Молекулам, летящим вдоль оси х, следует приписать энергию

,

отвечающую температуре в плоскости (х-), а молекулам, летящим в противоположном направлении, - энергию

,

отвечающую температуре в плоскости (х + ), где х – координата плоскости S (см. рис.).

Тогда количество энергии, переносимое молекулами за секунду через площадку S в положительном направлении оси х, можно записать следующим образом:

Сравнивая полученное выражение с законом Фурье, получим выражение для коэффициента теплопроводности через молекулярно-кинетические параметры газа:

.

Диффузия в газах

Предположим, что в единице объёма двухкомпонентной газовой смеси содержится n1 молекул одного вида и n2 молекул другого вида. Полное число молекул в единице объёма равно n = n1 + n2­. Допустим, что в направлении оси х создаются градиенты концентраций , причём . Тогда, , так что n, а, следовательно, и Р постоянны (в силу Р = nkT).

В этом случае газодинамических потоков не возникает. Однако вследствие теплового движения молекул будет происходить процесс выравнивания концентраций, сопровождающийся переносом массы каждой из компонент в направлении убывания её концентрации. Этот процесс носит название диффузии. Диффузия наблюдается так же в жидких и твёрдых телах.

Поток молекул i – го вида через перпендикулярную к оси х поверхность S определяется выражением

,

где D – коэффициент пропорциональности, называемый коэффициентом диффузии. Знак минус указывает на то, что поток молекул направлен в сторону убывания концентрации. Умножив обе части этого равенства на массу молекулы i – го вида mi, получим выражение для потока массы i – ой компоненты:

,

где i = nimi – парциальная плотность i – ой компоненты.

Эти формулы представляют собой эмпирические уравнения диффузии. Их называют уравнением Фика.

Получим уравнение диффузии, основываясь на молекулярно-кинетических представлениях, причём для упрощения расчётов будем считать, что молекулы обеих компонент мало отличаются друг от друга по массе (m1 m2 m) и имеют практически одинаковые эффективные диаметры (d1 d2 d). В этом случае молекулам обеих компонент можно приписывать одинаковую среднюю скорость теплового движения < >, а среднюю длину свободного пробега вычислить по формуле , где n = n1 + n2.

Пусть изменение концентрации первой компоненты вдоль оси х даётся функцией n1 = n1(x).

Поток молекул первой компоненты летящих через поверхность S в положительном направлении оси х, равен

,

а соответствующий поток молекул первой компоненты, летящих в отрицательном направлении оси х равен разности этих потоков

.

Таким образом, мы пришли к уравнению диффузии Фика, причём получили для коэффициента диффузии выражение

.

Соседние файлы в папке Курс лекций по Физике